This app encourages users to clean by turning it into a fun game. Users can choose cleaning tasks, track dust levels, and earn reward points, making the cleaning process more engaging and enjoyable.
เพื่อให้ผู้ใช้งานเห็นความสำคัญของปัญหาสุขภาวะในที่พักอาศัย
คณะวิทยาศาสตร์
With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.
คณะวิศวกรรมศาสตร์
In this project, we introduce Power Grid Analyzer (PGAz), an open-source software package based on MATLAB, specifically designed for analyzing and controlling future power grids. Initially, PGAz is equipped with four fundamental features: power flow (PF), optimal power flow (OPF), small-signal stability analysis (SSSA), and time-domain simulation (TS). At this stage, Part I concentrates on the development of PF and OPF. The formats of our developed tool are presented, along with its command prompts. In this part, we have developed several conventional yet effective methods in the PGAz package to address PF and OPF problems, including techniques such as the Newton-Raphson method, Gauss-Seidel method, Interior Point Method, Iwamoto’s method, Fast Decoupled Load Flow, Genetic Algorithm, and Particle Swarm Optimization. Additionally, it emphasizes important aspects, algorithms, and various case studies that have been tested against IEEE benchmarks ranging from the IEEE 5-bus to the IEEE 300-bus test systems. The results demonstrate the capabilities of PGAz for future educational and research applications in PF and OPF. Finally, we outline a plan for developing Part II, which will mainly focus on SSSA and TS.
คณะวิทยาศาสตร์
This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.