
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

คณะเทคโนโลยีการเกษตร
This research aims to evaluate the efficiency of nano-type oxygen diffusers at different pump power levels in sea bass nursery ponds. The study examines how varying power levels affect dissolved oxygen distribution in the water and their impact on the health, growth, and survival rates of sea bass. The findings indicate that pump power levels influence dissolved oxygen concentration, with the optimal power level improving oxygen distribution in the pond. This enhancement leads to higher survival and growth rates for sea bass. The results provide valuable insights for selecting appropriate oxygen diffusers and pump power levels in fish nursery pond systems. The experiment consisted of two conditions: 1. Without fish – This condition assessed the oxygenation capacity, oxygen transfer coefficient, oxygen transfer rate, and oxygen transfer efficiency of pumps at three different power levels. 2. With fish – This condition evaluated whether the oxygen supplied by pumps at three power levels was sufficient, based on the growth rate and survival rate of the fish in the pond. Blood counts were conducted to assess the immune response. The collected data were statistically analyzed using the RCBD method for the condition without fish and the CRD method for the condition with fish, employing SPSS software.

คณะวิทยาศาสตร์
This research aims to select the location of the beverage distribution center of Thai Spirit Industry Co., Ltd. with the lowest total cost of transportation. using a mathematical model by considering the Muang districts of all 76 provinces, excluding Chachoengsao Province, where the factory is located. In the present study, four scenarios were divided: 1) when only one distribution center was required; 2) when more than one distribution center was established; 3) when it was divided into 4 regions. There can only be one distribution center in one region, and 4) when it is divided into four regions, where more than one distribution center can be established in one region. When processed with the program IBM ILOG CPLEX Optimization Studio, the results are summarized as follows: Scenario 1, when only one distribution center is assigned. The total transportation cost is 786,107.75 baht/month. Scenario 2, when more than one distribution center can be established. The total transportation cost is 252,338.98 baht/month. Scenario 3, when divided into 4 regions by requiring only one distribution center in one region. The total transportation cost is 401,499.61 baht/month. Scenario 4, when divided into 4 regions by requiring that there is more than one distribution center in each region. The total transportation cost is 258,666.22 baht/month.

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
This research presents a Digital Twin of an Aquarium for Water Quality Monitoring, developing a virtual model that displays real-time key water parameters, including pH level, temperature, flow rate, and dissolved oxygen. Sensor data is processed and visualized through a Graphical User Interface (GUI) to reflect the real-time status of the virtual aquarium. This system enables accurate water quality monitoring and analysis while reducing reliance on expensive software solutions.