
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ
-

คณะวิศวกรรมศาสตร์
This project presents an interactive kiosk system designed to facilitate students, staff, and visitors within the university campus. The kiosk provides real-time event updates, news, and university document access via QR codes or email. It integrates a 3D map of the engineering department with navigation assistance, allowing users to locate offices and other facilities efficiently. Additionally, it features a room booking system, enabling users to reserve spaces through an online platform and check in via QR code scanning at the kiosk. By integrating digital technology and smart urban solutions, this system enhances accessibility, campus management, and visitor experience.

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang has a vision for sustainable excellence. The mission is to develop learners to be ready for the digital world, develop educational innovations using research as a base, strategic management with good governance, and academic services that benefit society. In this activity, the group of students joined with the Embassy of the Russian Federation in the Kingdom of Thailand, the working group of the Thai Silk and Culture Promotion Association, and the working group of the National Research Office (NRCT) to integrate knowledge to design a silk outfit that combines Thai and Russian cultures, create a network of cooperation in arts, culture, technology, innovation, and dissemination of knowledge and the beauty of Thai silk. The objective is to develop the potential of teachers and students in creative design, listen to the work guidelines from the working group of the Thai Silk and Culture Promotion Association, the working group of the National Research Office (NRCT) via an online meeting. The team of teachers and students from King Mongkut's Institute of Technology Ladkrabang under the name of the "Love Silk" group designed a Thai silk outfit that combines cultures with the identity of Thai silk and studying traditions and cultures of the Russian Federation's clothing. They studied related literature and research documents and integrated knowledge into the design process, inspired by the concept of the Rajapataen outfit. Since the reign of King Chulalongkorn (Rama V) in 1872, together with the clothing culture of the Russian Federation, emphasizing Thai silk, this concept has gone through the process of creating and selecting the design concept (Concept Generation and Selection). The concept received from the embassy was first submitted for feedback on July 25, 2024. There was a suggestion to add more uniqueness to Thai silk through a fashion show presentation by the wife and grandson of the Ambassador of the Russian Federation. Therefore, the designed outfits are 1 set of women's clothes and 1 set of boys' clothes. The women's set has an inner shirt adapted from the royal outfit using silk fabric, Kon Ka-ed pattern, with two separate pieces: 1 shirt and 1 skirt. The jacket is a modified long suit style, plain silk, dark pink and red. The boys' set has a long-sleeved shirt adapted from the contemporary royal style, tailored with cream silk, long slacks tailored with raw betel silk, and a collarless coat with blue silk and lotus pattern. Adapted from the Rajapattan suit with a long collar in an international style. On August 2, 2024, the designed suit and the prototype of the raw fabric suit were brought to the ambassador's wife and nephew to try on. On August 30, 2024, the ambassador was met for the 4th time to bring the silk suit that was cut into a real silk suit. The shirt was given to the ambassador's wife and nephew to try on. It was worn to join the fashion show in the 13th "Thai Silk to the World" Silk Festival at the Naval Auditorium, where lecturers and students from the Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, joined the fashion show in the finale round, which proceeded smoothly. After the event, the working group of the Thai Silk and Culture Promotion Association brought the clothes designed and tailored by the "Rak Prae Mai" team to exhibit Thai Silk to the World Exhibition from September 1-8, 2024 at the Emsphere Shopping Mall. The team summarized the report and compiled a complete report. In the implementation of this project, the Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang has received support and facilitation throughout the project. The budget support from the National Research Council of Thailand (NRCT), the support of fabrics for sewing from the Thai Silk and Culture Promotion Association, and the information for designing valuable silk dresses from the Embassy of the Russian Federation in the Kingdom of Thailand are very important factors that made this operation a success. It is a very important experience for the team of teachers and students of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang. We sincerely hope to receive good cooperation in the future.