KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Vision-Based Spacecraft Pose Estimation

Vision-Based Spacecraft Pose Estimation

Abstract

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Objective

In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

Other Innovations

---

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

---

---

Read more
LUK CHOK JELLY

คณะศิลปศาสตร์

LUK CHOK JELLY

As a value-added product of locally sourced fruits in Phang Nga, stevia-sweetened jelly offers a healthy and sustainable option for consumers seeking reduced sugar intake. This product has the potential to become a popular souvenir, promoting local agriculture and boosting the regional economy.

Read more
KinderForest : Puzzle Building Game with VR Technology

คณะเทคโนโลยีสารสนเทศ

KinderForest : Puzzle Building Game with VR Technology

KinderForest : Puzzle Building Game with VR Technology is designed to utilize Virtual Reality (VR) technology with the primary aim of promoting creative problem-solving skills and basic practical application abilities among players. This project presents the game in an Augmented Virtual Reality (AR VR) format, emphasizing physical engagement of players during gameplay while fostering creativity and fundamental application skills. The project team has chosen to utilize Unreal Engine 5.1 and Oculus Quest 2 virtual reality glasses to develop the game in the form of augmented virtual reality technology. Within the game, there will be various levels that require creative thinking and different approaches to pass. Time constraints will be a crucial element in completing missions and progressing through these levels. Players will physically move their bodies in response to in-game movements. Each level will present unique challenges that will necessitate both physical movement and problem-solving skills. The game will provide different rewards based on the outcomes of mission completion, and players will be informed of their results once they have successfully passed a level.

Read more