KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Vision-Based Spacecraft Pose Estimation

Vision-Based Spacecraft Pose Estimation

Abstract

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Objective

In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

Other Innovations

TPA Robot Contest Thailand Championship

คณะวิศวกรรมศาสตร์

TPA Robot Contest Thailand Championship

Inventing robots for the TPA Robotics Competition Thailand Championship 2024, game “Rice Way, Thai Way to the International Way (HARVEST DAY)”

Read more
Herbal inhaler Homyen

คณะศิลปศาสตร์

Herbal inhaler Homyen

The innovation of aromatic and cooling inhalers stems from the widespread use of inhalers in modern times. This innovation aims to elevate the product to suit contemporary lifestyles, incorporating Thai identity in a way that resonates with the younger generation. The development focuses on enhancing scents using locally sourced Thai ingredients, adding value to Thai flowers and fruits. Various extraction methods are employed to preserve the fragrance for a longer duration. Additionally, borneol, camphor, and menthol are blended to provide a refreshing and cooling sensation. For the packaging, polymer clay is used to create the container, which is hand-molded and then baked to harden. Instead of a traditional cap, a fabric covering is used to introduce a unique and innovative alternative to conventional inhalers.

Read more
Diabetes Meal Management Application

คณะวิศวกรรมศาสตร์

Diabetes Meal Management Application

The Diabetes Meal Management Application is a digital health tool designed to empower Type 2 diabetic patients in managing their diet and blood sugar levels more effectively. With features like personalized meal recommendations, nutrient tracking, and seamless integration with wearable blood glucose monitors via Blood sugar measuring device (CGM), the application enables users to monitor glucose fluctuations in real time and adjust dietary choices accordingly. Built with the Flutter framework and supported by a backend of Express.js and MongoDB, the application prioritizes a user-friendly interface, ensuring easy navigation and encouraging consistent engagement with meal planning and health tracking. Preliminary user trials show that the application contributes to more stable blood sugar levels and improved adherence to dietary recommendations, helping users reduce health risks associated with diabetes complications. By offering a proactive approach to diabetes management, the application reduces the need for frequent clinical interventions, thus potentially lowering medical costs over time. This project highlights the promising role of digital health solutions in supporting personalized diabetes care, emphasizing the potential for scalable, user-centered interventions that foster long-term health improvements for diabetic patients.

Read more