KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Vision-Based Spacecraft Pose Estimation

Vision-Based Spacecraft Pose Estimation

Abstract

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Objective

In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

Other Innovations

Development of Terminalia Chebula Retz. Extract loaded Edible Film for mouth against wound

คณะอุตสาหกรรมอาหาร

Development of Terminalia Chebula Retz. Extract loaded Edible Film for mouth against wound

This study focused on the development of an edible film containing Terminalia chebula Retz extract for the treatment of oral ulcers. The film was designed to dissolve in the mouth without the need for swallowing or chewing, which is suitable for people with canker sores or oral inflammation. Terminalia chebula extract has been shown to have several pharmacological properties, including antimicrobial, antioxidant, and anti-inflammatory activities.

Read more
none

คณะเทคโนโลยีการเกษตร

none

-

Read more
Artifical intelligence for agriculture and enviroment

คณะวิศวกรรมศาสตร์

Artifical intelligence for agriculture and enviroment

Artificial intelligence for agriculture and environment is a collection of significant models for enviromental friendly Thailand development. The models create with machine learning and deep learning by Near infrared spectroscopy research center for agricultural and food products, including: Determining the nutrient needs (N P K) of durian trees by measuring durian leaves using a non-destructive technique using artificial intelligence, Identification of combustion properties of biomass from fast-growing trees and agricultural residues using non-destructive techniques combined with artificial intelligence, and Evaluation of global warming due to biomass combustion using non-destructive techniques using artificial intelligence. The basic technology used is Near infrared Fourier transform spectroscopy technology which measurement and output display can be done quickly without chemical, no requirement for special expert, and measurement price per sample is very low. But the instrument cannot be produced in Thailand.

Read more