KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Vision-Based Spacecraft Pose Estimation

Vision-Based Spacecraft Pose Estimation

Abstract

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Objective

In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

Other Innovations

Improvement and Technical production of hot pepper (C. chinense) for high yield and high pungency

คณะเทคโนโลยีการเกษตร

Improvement and Technical production of hot pepper (C. chinense) for high yield and high pungency

Capsicum chinense is a high-potential economic crop in the food and pharmaceutical industries due to its role as a primary source of capsaicin, a bioactive compound with significant physiological effects. However, capsaicin levels and fruit quality will be influenced by genetic factors, environmental conditions, and genetic-by-environment (G×E) interactions, leading to variability in capsaicin biosynthesis. This study will aim to analyze the impact of different environmental conditions on the growth, fruit quality, and capsaicin content of C. chinense ‘Scotch Bonnet’. The field experiments will be conducted at the demonstration plots of the Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, during two growing seasons: July–October (rainy season) and December–April (dry season). Four condition environments will be evaluated, and environmental parameters such as temperature, relative humidity, and light quality will be monitored to assess their effects on plant physiology and capsaicin biosynthesis. Additionally, an F1 hybrid breeding program will be established using six parental lines through a Half-diallel mating design, generating 15 hybrid combinations. The general combining ability (GCA) and specific combining ability (SCA) will be assessed to identify promising hybrid combinations with high and stable capsaicin content and yield. The findings from this study will be expected to provide valuable insights into optimizing cultivation conditions for high-pungency chili production and supporting the development of F1 hybrid seeds with commercial viability and consistent capsaicin levels.

Read more
Designed Quality coffee from fermentation

คณะอุตสาหกรรมอาหาร

Designed Quality coffee from fermentation

Coffee is a critical agricultural commodity to be used to produce a premium beverage to serve people worldwide. Coffee microbiome turned to be an essential tool to improve the bean quality through the natural fermentation. Therefore, understanding the microbial diversities could create the final product's better quality. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand to characterize the microorganisms involved in correlation toward the biochemical characteristics and metabolic attributes. Roasting is another important step in developing the complex flavor/ aroma that make coffee to be enjoyable. During the roasting process, the beans undergo many complex and alternatively change in the physicochemical properties from the gained substances in the fermentation process. The changing in the formation of the substances responsible for the sensory qualities, physicochemical/ aroma attributes as well as the health benefits of the final product. Using the starter culture could also develop the distinguished characteristics of coffee (Research collaboration with Van Hart company)

Read more
Spirt of thailand

คณะวิศวกรรมศาสตร์

Spirt of thailand

-

Read more