
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

คณะเทคโนโลยีการเกษตร
The development of a board game to enhance cooking skills focuses on a popular and well-known dish—burgers. This study integrates learning with interactive gameplay, allowing players to gain knowledge about burgers, including their ingredients, preparation methods, and even the basics of running a burger business. Through hands-on activities and engaging game mechanics, players can develop both their culinary skills and entrepreneurial mindset while enjoying the fun and immersive experience of the board game.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
This study aims to identify the toothbrush appearance factors that affect baby boomers purchasing decisions. The research divide into three stages: The first stage is to classify the toothbrush appearance factors through a review of literature, research, and examining toothbrushes currently available on the market, summarizing them as appearance factors. The second stage is to summarize the results of the toothbrush appearance factors to create a multiple-choice questionnaire in three dimensions: purchasing decisions, aesthetics, and functionality. Collecting data from a group of 30 Baby Boomers aged 57-75 years old. The last stage is to summarize the three dimensions of appearance factors affecting baby boomers' toothbrush purchasing decisions and report as percentages and rank them. The research findings indicate that the most significant toothbrush appearance factor is a "Curved handle," accounting for 80%, followed by “Multi-level bristles” at 70%, a "Rubber thumb rest" at 53.3%, "Handle divided into more than two parts" at 50%, and “Offset shape” at 40%, respectively. In terms of the reason for purchasing decision based on various factors are as follows: the curved handle and offset shape give a sense of purchase with its aesthetic, While the selection of multi-level bristles, the Rubber thumb rest, and the handle divided into more than two parts due to functionality.

คณะวิทยาศาสตร์
The current residential solar panels lack an adequate monitoring system, which hinders their optimal utilization. This research aims to design an Internet of Things (IoT) monitoring system and employ machine learning techniques to predict the current and voltage generated by solar panels. Experimental studies have revealed a correlation between dust accumulation and the current output of solar panels. The proposed system facilitates the prediction of the optimal time for cleaning solar panels.