
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

คณะวิศวกรรมศาสตร์
This cooperative education project aims to enhance speed and facilitate the verification process for stock issuance, transfers, distributions, and receipts in the warehouse. The primary focus is to address issues related to wasted time and delays in operational processes. Through analysis, it was found that SAP, the current system, involves complex processes requiring specialized expertise. Although the company has developed the iWarehouse system to improve efficiency, delays and procedural complexity persist. To resolve these challenges, Power BI was utilized to visualize data related to stock issuance, transfers, distributions, and receipts, allowing warehouse staff to work more efficiently by minimizing waste and accelerating processes. Additionally, Power Automate was integrated to automate the processing of received stock numbers from emails, reducing errors and delays caused by manual data entry. The results of this improvement indicate a significant increase in employee efficiency and a noticeable reduction in wasted time. Upon project completion, the findings and development approach will be provided to the company for further enhancement.

คณะเทคโนโลยีการเกษตร
The reason of this project is How to make water system during breeding Golden apple snail&Green caviar with limitation area. Make sure that waterfowl system can work

คณะเทคโนโลยีการเกษตร
-