
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

คณะเทคโนโลยีการเกษตร
The Public park project : Ancient Sea Park. This's a new park in Aangsila Chonburi make for learn and travel in concept The sea in 65 million years ago.

คณะวิศวกรรมศาสตร์
This cooperative education report presents a project for developing a Distributed Control System (DCS) for boilers in a sugar factory. The objective is to enhance the control system for boilers 1-8 to operate cohesively within the DCS framework provided by ABB, utilizing the ABB Ability™ System 800xA software. The overall functionality of the system involves creating a control program that begins with the utilization of bagasse, a byproduct from the sugar extraction process, as fuel for the boiler. The program manages various operations of the boiler, including the intake of air into the combustion chamber, the internal functioning of the boiler, and the treatment of flue gases before their release into the atmosphere. The project encompasses the development of the DCS program, the design and creation of HMI display graphics, the study and design of the boiler control system, the documentation of the project, and the control processes utilizing the ABB Ability™ System 800xA software, culminating in the operational outcomes.

คณะวิทยาศาสตร์
This project presents the development of a "Smart Cat House" using Internet of Things (IoT) and image processing technology to facilitate and enhance the safety of cat care for owners. The infrastructure of the smart cat house consists of an ESP8266 board connected to an ESP32 CAM camera for cat monitoring, and an Arduino board that controls various sensors such as a motion sensor in the litter box, a DHT22 temperature and humidity sensor, an ultrasonic water and food level sensor, including a water supply system for cats, an automatic feeding system, and a ventilation system controlled by a DC FAN that adjusts its operation according to the measured temperature to maintain a suitable environment. There is also an IR sensor to detect the cat's entry into the litter box and an automatic sand changing system with a SERVO MOTOR. All systems are connected and controlled through the Blynk application, which can be used on mobile phones, allowing owners to monitor and care for their pets remotely. Cat detection and identification uses image processing technology from the ESP32 CAM camera in conjunction with YOLO (You Only Look Once), a high-performance object detection algorithm, to detect and distinguish between cats and people. Data from various sensors are sent to the Arduino board to control the operation of various devices in the smart cat house, such as turning lights on and off, automatically changing sand, adjusting temperature and humidity, feeding food and water at scheduled times, or ventilation. The use of a connection system via ESP8266 and the Blynk application makes it easy and convenient to control various devices. Owners can monitor and control the operation of the entire system from anywhere with internet access.