KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Vision-Based Spacecraft Pose Estimation

Vision-Based Spacecraft Pose Estimation

Abstract

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Objective

In one, docking is defined as “when one incoming spacecraft rendezvous with another spacecraft and flies a controlled collision trajectory in such a manner to align and mesh the interface mechanisms”, and defined docking as an on-orbital service to connect two free-flying man-made space objects. The service should be supported by an accurate, reliable, and robust positioning and orientation (pose) estimation system. Therefore, pose estimation is an essential process in an on-orbit spacecraft docking operation. The position estimation can be obtained by the most well-known cooperative measurement, a Global Positioning System (GPS), while the spacecraft attitude can be measured by an installed Inertial Measurement Unit (IMU). However, these methods are not applicable to non-cooperative targets. Many studies and missions have been performed by focusing on mutually cooperative satellites. However, the demand for non-cooperative satellites may increase in the future. Therefore, determining the attitude of non-cooperative spacecrafts is a challenging technological research problem that can improve spacecraft docking operations. One traditional method, which is based on spacecraft control principles, is to estimate the position and attitude of a spacecraft using the equations of motion, which are a function of time. However, the prediction using a spacecraft equation of motion needs support from the sensor fusion to achieve the highest accuracy of the state estimation algorithm. For non-cooperative spacecraft, a vision-based pose estimator is currently developing for space application with a faster and more powerful computational resource.

Other Innovations

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

คณะวิทยาศาสตร์

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

Read more
The Metaverse of KMITL Lifelong Learning Center (KLLC) and Data Management Center (KDMC) for Public Relations

คณะเทคโนโลยีสารสนเทศ

The Metaverse of KMITL Lifelong Learning Center (KLLC) and Data Management Center (KDMC) for Public Relations

This thesis aims to present the development of a metaverse project for the KMITL Lifelong Learning Center (KLLC) and KMITL Data Management Center (KDMC) for Public Relations at King Mongkut's Institute of Technology Ladkrabang, with the main goal of creating a metaverse prototype to promote learning and public relations through virtual reality technology for students, staff, and external individuals. In this project, the developers have created a metaverse system to simulate a virtual experience for users at the KMITL Lifelong Learning Center (KLLC) and KMITL Data Management Center (KDMC) for Public Relations at King Mongkut's Institute of Technology Ladkrabang. Users will be able to access the system through a web application developed with Unity, which is the tool used to create the metaverse system. The design allows users to visit and interact with various locations within the building to promote public relations in a more widespread virtual format. The developers used Maya and Unity software to create a metaverse system for modeling 3D objects and managing various functions, providing users with a realistic and novel experience. This project is expected to promote learning and the dissemination of information in an easily accessible modern format, creating opportunities for education and learning for those who cannot travel to see the actual locations. This makes metaverse technology an important tool for effectively developing learning and engagement in the digital age.

Read more
3D-Printed Spectrophotometer for Determination of Formaldehyde in Fresh Seafood

คณะวิศวกรรมศาสตร์

3D-Printed Spectrophotometer for Determination of Formaldehyde in Fresh Seafood

This research focuses on the development of a 3D-printed spectrophotometer. The device was designed using AutoCAD, ensuring durability, low cost, and portability. It is intended for measuring the amount of formaldehyde in fresh seafood.

Read more