Cancer is one of the major health issues in Thailand, particularly as the country enters an aging society. The risk of chronic diseases among the elderly often results in limitations in treatment, making it difficult for most patients to achieve a complete recovery. This necessitates continuous care and the provision of accurate information and guidance about cancer. However, current health record systems for patients lack effective interconnectivity, which hinders data analysis and the development of patient care models. Additionally, incorrect information about cancer spread across social media can lead to misunderstandings among elderly patients. To address these issues, researchers have developed a chatbot system that utilizes Natural Language Processing (NLP) technology to understand human language and accurately respond to questions about elderly cancer patient care. The chatbot provides reliable and up-to-date information based on medical knowledge sourced from a database reviewed by healthcare professionals. Furthermore, a web application has been developed to record and analyze patient assessments according to medical standards, enabling healthcare providers to plan and develop appropriate treatment approaches in a better way. This system also facilitates data sharing and connectivity across hospital systems, allowing information to be used to enhance the precision and modernity of treatment approaches. In addition, the chatbot acts as an assistant, providing information and guidance to patients, reducing the workload of healthcare staff in answering questions and encouraging patients to take a more active role in managing their own health.
โรคมะเร็งเป็นหนึ่งในสาเหตุสำคัญของการเจ็บป่วยและการเสียชีวิตของประชากรทั่วโลก องค์กรอนามัยโลก (World Health Organization; WHO) ระบุว่าในปี 2022 มีผู้ป่วยมะเร็งรายใหม่ประมาณ 20 ล้านคน และคาดว่าในปี 2050 จะมีผู้ป่วยมะเร็งรายใหม่เพิ่มเป็น 35 ล้านคนทั่วโลก โดยในประเทศไทยมีผู้ป่วยมะเร็งรายใหม่จำแนกตามระยะ ของโรคและกลุ่มอายุ ซึ่งพบว่าผู้ป่วยโรคมะเร็งที่อยู่ในระยะ ลุกลามส่วนใหญ่อยู่ในกลุ่มผู้สูงอายุร้อยละ 87 และมากกว่า ร้อยละ 50 ของผู้ป่วยโรคมะเร็งทั้งหมด จากสถิติดังกล่าว สามารถสรุปได้ว่า อายุที่เพิ่มขึ้นเป็นปัจจัยเสี่ยงสำคัญที่ส่ง- ผลต่อการเกิดโรคมะเร็ง ทำให้ผู้สูงอายุจึงมีความเสี่ยงสูง กว่ากลุ่มอายุอื่น ๆ และจำเป็นต้องได้รับการดูแลรักษา อย่างใกล้ชิด แต่การรักษาในปัจจุบันพบว่าการบันทึกข้อมูล ในแต่ละโรงพยาบาลของไทยมักไม่เชื่อมโยงกัน ซึ่งนำไปสู่ การวิเคราะห์และการวิจัยที่เป็นไปอย่างล่าช้า นอกจากนี้ ผู้สูงอายุส่วนใหญ่มักพบอุปสรรคในการเข้าถึงข้อมูลที่เกี่ยวข้องกับโรคมะเร็ง โดยเฉพาะข้อมูลจากแหล่งที่ไม่น่าเชื่อถือ ซึ่งอาจทำให้เกิดการเข้าใจผิดเกี่ยวกับโรคและวิธีการรักษา ดังนั้นผู้วิจัยจึงพัฒนาระบบแชทบอทและเว็บแอปพลิเคชัน เพื่อช่วยในการเข้าถึงบริการด้านสุขภาพของผู้ป่วยสูงอายุ และอำนวยความสะดวกให้แก่บุคลากรทางการแพทย์

คณะวิทยาศาสตร์
This research focuses on the fabrication of graphene oxide (GO) composite membranes using the Phase-Inversion Method, which transforms polymers from liquid to solid through phase separation. This process creates a porous membrane structure, making it highly adaptable, cost-effective, and suitable for wastewater treatment, separation processes, and industrial filtration applications. Graphene oxide, with its nano-layered structure, offers excellent molecular sieving properties, high water permeability, and chemical and mechanical stability, making it an ideal additive for membrane fabrication. The GO-based membrane demonstrates efficient removal of nanoparticles, heavy metal ions (Pb²⁺, Cr⁶⁺, Hg²⁺), organic pollutants, and microorganisms while exhibiting antifouling properties and high hydrophilicity due to oxygen-functional groups. Applications of this membrane include industrial wastewater treatment, desalination, and the removal of pharmaceutical contaminants, such as antibiotics and hormones. The incorporation of GO enhances membrane performance, providing a sustainable and energy-efficient solution for water purification.

คณะวิศวกรรมศาสตร์
This project aims to develop a conceptual prototype of a weapon aiming system that simulates an anti-aircraft gun. Utilizing an optical camera, the system detects moving objects and calculates their trajectories in real time. The results are then used to control a motorized laser pointer with two degrees of freedom (DoF) of rotation, enabling it to aim at the predicted position of the target. Our system is built on the Raspberry Pi platform, employing machine vision software. The object motion tracking functionality was developed using the OpenCV library, based on color detection algorithms. Experimental results indicate that the system successfully detects the movement of a tennis ball at a rate of 30 frames per second (fps). The current phase involves designing and integratively testing the mechanical system for precise laser pointer position control. This project exemplifies the integration of knowledge in electronics (computer programming) and mechanical engineering (motor control).

คณะแพทยศาสตร์
This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.