Cancer is one of the major health issues in Thailand, particularly as the country enters an aging society. The risk of chronic diseases among the elderly often results in limitations in treatment, making it difficult for most patients to achieve a complete recovery. This necessitates continuous care and the provision of accurate information and guidance about cancer. However, current health record systems for patients lack effective interconnectivity, which hinders data analysis and the development of patient care models. Additionally, incorrect information about cancer spread across social media can lead to misunderstandings among elderly patients. To address these issues, researchers have developed a chatbot system that utilizes Natural Language Processing (NLP) technology to understand human language and accurately respond to questions about elderly cancer patient care. The chatbot provides reliable and up-to-date information based on medical knowledge sourced from a database reviewed by healthcare professionals. Furthermore, a web application has been developed to record and analyze patient assessments according to medical standards, enabling healthcare providers to plan and develop appropriate treatment approaches in a better way. This system also facilitates data sharing and connectivity across hospital systems, allowing information to be used to enhance the precision and modernity of treatment approaches. In addition, the chatbot acts as an assistant, providing information and guidance to patients, reducing the workload of healthcare staff in answering questions and encouraging patients to take a more active role in managing their own health.
โรคมะเร็งเป็นหนึ่งในสาเหตุสำคัญของการเจ็บป่วยและการเสียชีวิตของประชากรทั่วโลก องค์กรอนามัยโลก (World Health Organization; WHO) ระบุว่าในปี 2022 มีผู้ป่วยมะเร็งรายใหม่ประมาณ 20 ล้านคน และคาดว่าในปี 2050 จะมีผู้ป่วยมะเร็งรายใหม่เพิ่มเป็น 35 ล้านคนทั่วโลก โดยในประเทศไทยมีผู้ป่วยมะเร็งรายใหม่จำแนกตามระยะ ของโรคและกลุ่มอายุ ซึ่งพบว่าผู้ป่วยโรคมะเร็งที่อยู่ในระยะ ลุกลามส่วนใหญ่อยู่ในกลุ่มผู้สูงอายุร้อยละ 87 และมากกว่า ร้อยละ 50 ของผู้ป่วยโรคมะเร็งทั้งหมด จากสถิติดังกล่าว สามารถสรุปได้ว่า อายุที่เพิ่มขึ้นเป็นปัจจัยเสี่ยงสำคัญที่ส่ง- ผลต่อการเกิดโรคมะเร็ง ทำให้ผู้สูงอายุจึงมีความเสี่ยงสูง กว่ากลุ่มอายุอื่น ๆ และจำเป็นต้องได้รับการดูแลรักษา อย่างใกล้ชิด แต่การรักษาในปัจจุบันพบว่าการบันทึกข้อมูล ในแต่ละโรงพยาบาลของไทยมักไม่เชื่อมโยงกัน ซึ่งนำไปสู่ การวิเคราะห์และการวิจัยที่เป็นไปอย่างล่าช้า นอกจากนี้ ผู้สูงอายุส่วนใหญ่มักพบอุปสรรคในการเข้าถึงข้อมูลที่เกี่ยวข้องกับโรคมะเร็ง โดยเฉพาะข้อมูลจากแหล่งที่ไม่น่าเชื่อถือ ซึ่งอาจทำให้เกิดการเข้าใจผิดเกี่ยวกับโรคและวิธีการรักษา ดังนั้นผู้วิจัยจึงพัฒนาระบบแชทบอทและเว็บแอปพลิเคชัน เพื่อช่วยในการเข้าถึงบริการด้านสุขภาพของผู้ป่วยสูงอายุ และอำนวยความสะดวกให้แก่บุคลากรทางการแพทย์

คณะวิศวกรรมศาสตร์
Jaundice, a common condition in infants that results from high bilirubin levels in the blood, often requires early diagnosis and monitoring to prevent severe complications, especially in newborns. Traditional diagnostic methods can be time-consuming and subject to human error. This study proposes an approach for real-time jaundice detection using advanced image processing techniques and machine learning algorithms. By analyzing images captured in RGB color spaces, pixel values are extracted and processed through Otsu’s thresholding and morphological operations to detect color patterns indicative of jaundice. A classifier model is then trained to distinguish between normal and jaundiced conditions, offering an automated, accurate, and efficient diagnostic tool. The system’s potential to operate in real-time makes it particularly suited for clinical settings, providing healthcare professionals with timely insights to improve patient outcomes. The proposed method represents a significant innovation in healthcare, combining artificial intelligence and medical imaging to enhance the early detection and management of jaundice, reducing reliance on manual interventions and improving overall healthcare delivery.

คณะอุตสาหกรรมอาหาร
This research investigates active packaging films made from polyvinyl alcohol (PVA) and nanocellulose fibers (NFC), incorporating silver nanoparticles (AgNPs) synthesized from Terminalia chebula extract, which possesses antibacterial and antifungal properties. The developed films were tested for their mechanical properties, microbial inhibition, and biodegradability. The results showed that the addition of AgNPs from Terminalia chebula enhanced product protection and effectively extended the shelf life of strawberries while being environmentally friendly.

คณะอุตสาหกรรมอาหาร
The reuse of cooking oil in food preparation leads to oil degradation and the formation of harmful compounds due to oxidation. This study focuses on enhancing the stability of used palm oil through ultrasound-assisted infusion with three varieties of banana blossoms: Kluai Khai, Kluai Hom, and Kluai Nam Wa, which are rich in phenolic compounds and antioxidants. The research investigates the restoration of used palm oil by infusing dried and powdered banana blossoms using ultrasonic treatment at different temperatures and durations. The quality of the infused oil was evaluated through physical (water activity, moisture content, and color), chemical (peroxide value, acid value, and Thio barbituric acid reactive substances), and antioxidant activity (DPPH, ABTS, and FRAP) analyses.