Cancer is one of the major health issues in Thailand, particularly as the country enters an aging society. The risk of chronic diseases among the elderly often results in limitations in treatment, making it difficult for most patients to achieve a complete recovery. This necessitates continuous care and the provision of accurate information and guidance about cancer. However, current health record systems for patients lack effective interconnectivity, which hinders data analysis and the development of patient care models. Additionally, incorrect information about cancer spread across social media can lead to misunderstandings among elderly patients. To address these issues, researchers have developed a chatbot system that utilizes Natural Language Processing (NLP) technology to understand human language and accurately respond to questions about elderly cancer patient care. The chatbot provides reliable and up-to-date information based on medical knowledge sourced from a database reviewed by healthcare professionals. Furthermore, a web application has been developed to record and analyze patient assessments according to medical standards, enabling healthcare providers to plan and develop appropriate treatment approaches in a better way. This system also facilitates data sharing and connectivity across hospital systems, allowing information to be used to enhance the precision and modernity of treatment approaches. In addition, the chatbot acts as an assistant, providing information and guidance to patients, reducing the workload of healthcare staff in answering questions and encouraging patients to take a more active role in managing their own health.
โรคมะเร็งเป็นหนึ่งในสาเหตุสำคัญของการเจ็บป่วยและการเสียชีวิตของประชากรทั่วโลก องค์กรอนามัยโลก (World Health Organization; WHO) ระบุว่าในปี 2022 มีผู้ป่วยมะเร็งรายใหม่ประมาณ 20 ล้านคน และคาดว่าในปี 2050 จะมีผู้ป่วยมะเร็งรายใหม่เพิ่มเป็น 35 ล้านคนทั่วโลก โดยในประเทศไทยมีผู้ป่วยมะเร็งรายใหม่จำแนกตามระยะ ของโรคและกลุ่มอายุ ซึ่งพบว่าผู้ป่วยโรคมะเร็งที่อยู่ในระยะ ลุกลามส่วนใหญ่อยู่ในกลุ่มผู้สูงอายุร้อยละ 87 และมากกว่า ร้อยละ 50 ของผู้ป่วยโรคมะเร็งทั้งหมด จากสถิติดังกล่าว สามารถสรุปได้ว่า อายุที่เพิ่มขึ้นเป็นปัจจัยเสี่ยงสำคัญที่ส่ง- ผลต่อการเกิดโรคมะเร็ง ทำให้ผู้สูงอายุจึงมีความเสี่ยงสูง กว่ากลุ่มอายุอื่น ๆ และจำเป็นต้องได้รับการดูแลรักษา อย่างใกล้ชิด แต่การรักษาในปัจจุบันพบว่าการบันทึกข้อมูล ในแต่ละโรงพยาบาลของไทยมักไม่เชื่อมโยงกัน ซึ่งนำไปสู่ การวิเคราะห์และการวิจัยที่เป็นไปอย่างล่าช้า นอกจากนี้ ผู้สูงอายุส่วนใหญ่มักพบอุปสรรคในการเข้าถึงข้อมูลที่เกี่ยวข้องกับโรคมะเร็ง โดยเฉพาะข้อมูลจากแหล่งที่ไม่น่าเชื่อถือ ซึ่งอาจทำให้เกิดการเข้าใจผิดเกี่ยวกับโรคและวิธีการรักษา ดังนั้นผู้วิจัยจึงพัฒนาระบบแชทบอทและเว็บแอปพลิเคชัน เพื่อช่วยในการเข้าถึงบริการด้านสุขภาพของผู้ป่วยสูงอายุ และอำนวยความสะดวกให้แก่บุคลากรทางการแพทย์
คณะวิทยาศาสตร์
In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
On the path of life since we were born, we have encountered many things in life, differences and various characteristics. However, each factor of each person's life has different responsibilities, dreams, and life context differences. Everyone still has to struggle against obstacles and many burdens in life, shouldering the responsibilities of themselves and their families in order to survive. Living in different ways, with many burdens and dreams, but in real life, how many people can shoulder these burdens to reach their dreams?
คณะวิศวกรรมศาสตร์
The Thai Sign Language Generation System aims to create a comprehensive 3D modeling and animation platform that translates Thai sentences into dynamic and accurate representations of Thai Sign Language (TSL) gestures. This project enhances communication for the Thai deaf community by leveraging a landmark-based approach using a Vector Quantized Variational Autoencoder (VQVAE) and a Large Language Model (LLM) for sign language generation. The system first trains a VQVAE encoder using landmark data extracted from sign videos, allowing it to learn compact latent representations of TSL gestures. These encoded representations are then used to generate additional landmark-based sign sequences, effectively expanding the training dataset using the BigSign ThaiPBS dataset. Once the dataset is augmented, an LLM is trained to output accurate landmark sequences from Thai text inputs, which are then used to animate a 3D model in Blender, ensuring fluid and natural TSL gestures. The project is implemented using Python, incorporating MediaPipe for landmark extraction, OpenCV for real-time image processing, and Blender’s Python API for 3D animation. By integrating AI, VQVAE-based encoding, and LLM-driven landmark generation, this system aspires to bridge the communication gap between written Thai text and expressive TSL gestures, providing the Thai deaf community with an interactive, real-time sign language animation platform.