KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Toys Design from Scrap Wood Waste by Pallet Maker Group Co., Ltd.

Abstract

Toys Design from Scrap Wood Waste by Pallet Maker Group Co., Ltd.

Objective

บริษัท พาเลท เมกเกอร์ กรุ๊ป จำกัด เป็นผู้ผลิตพาเลทไม้ ซึ่งมีกระบวนการผลิตที่ทำให้เกิดเศษไม้เหลือทิ้งจำนวนมาก เศษไม้เหล่านี้มักถูกกำจัดทิ้งหรือนำไปขายในราคาต่ำ ซึ่งนอกจากจะเป็นการสูญเสียทรัพยากรแล้วยังส่งผลกระทบต่อสิ่งแวดล้อม เช่น การเพิ่มปริมาณขยะและปัญหาการตัดไม้ทำลายป่า โครงการนี้จึงมีแนวคิดในการนำเศษไม้เหล่านี้มาออกแบบและผลิตเป็นของเล่นเชิงการศึกษาที่ช่วยเสริมสร้างพัฒนาการของเด็ก โดยมุ่งเน้นให้เป็นของเล่นที่ปลอดภัยและเป็นมิตรต่อสิ่งแวดล้อม นอกจากนี้ โครงการนี้ยังสอดคล้องกับแนวคิดเศรษฐกิจหมุนเวียน (Circular Economy) ที่มุ่งเน้นการใช้ทรัพยากรอย่างคุ้มค่าและลดขยะ ด้วยการนำวัสดุเหลือใช้กลับมาใช้ใหม่ (Upcycling) อีกทั้งยังแสดงให้เห็นถึงความสำคัญของการออกแบบอย่างรับผิดชอบ ที่สามารถสร้างมูลค่าเพิ่มจากวัสดุที่ถูกมองข้ามได้อย่างสร้างสรรค์

Other Innovations

Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

คณะวิทยาศาสตร์

Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

Bacteriocins are microbial peptides that demonstrate potency against pathogens. This study evaluated the inhibitory effects on pathogens and characterized the bacteriogenomic profile of strain TKP1-5, isolated from the feces of Anas platyrhynchos domesticus. Strain TKP1-5 was characterized using phenotypic traits, 16S rRNA sequencing, and Whole-Genome Sequencing (WGS). It exhibited growth in the presence of 2-6% NaCl, temperatures of 25-45°C, and pH levels ranging from 3 to 9. Based on ANIb, ANIm, and dDDH values, strain TKP1-5 was identified as Lactococcus lactis. Whole genome analysis revealed that strain TKP1-5 harbors the Nisin Z peptide gene cluster with a bit-score of 114.775. The antimicrobial spectrum of bacteriocin TKP1-5 showed inhibitory effects against pathogenic bacteria including Pediococcus pentosaceus JCM5885, Listeria monocytogenes ATCC 19115, Enterococcus faecalis JCM 5803T, Salmonella Typhimurium ATCC 13311ᵀ, Aeromonas hydrophila B1 AhB1, Streptococcus agalactiae 1611 and Streptococcus cowan I. Genomic analysis confirmed L. lactis TKP1-5 as a non-human pathogen without antibiotic resistance genes or plasmids. Furthermore, L. lactis TKP1-5 contains potential genes associated with various probiotic properties and health benefits. This suggests that L. lactis TKP1-5, with its antibacterial activity and probiotic potential, could be a promising candidate for further research and application in the food industry.

Read more
Investigation variable star classification through light curve analysis using machine learning approach

คณะวิทยาศาสตร์

Investigation variable star classification through light curve analysis using machine learning approach

With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.

Read more
Automatic gemstone color sorting machine

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

Automatic gemstone color sorting machine

This research aims to develop an automatic gemstone color sorting machine to overcome the limitations of manual color sorting, which can be restricted by speed and accuracy. This study applies deep learning technology to analyze and classify gemstone colors precisely, developing an algorithm capable of accurately detecting and categorizing color shades. An automated conveyor system was also designed to efficiently transport gemstones through the color sorting process, allowing for continuous operation. The sorting machine works by capturing high-resolution images of the gemstones, processing them with software to classify color shades, and directing each gemstone to its designated position on the automated conveyor. Experimental results demonstrate that the automated color sorting machine, integrated with the conveyor system, achieves high speed and accuracy, significantly reducing labor costs and enhancing the efficiency of gemstone color sorting.

Read more