KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Toys Design from Scrap Wood Waste by Pallet Maker Group Co., Ltd.

Abstract

Toys Design from Scrap Wood Waste by Pallet Maker Group Co., Ltd.

Objective

บริษัท พาเลท เมกเกอร์ กรุ๊ป จำกัด เป็นผู้ผลิตพาเลทไม้ ซึ่งมีกระบวนการผลิตที่ทำให้เกิดเศษไม้เหลือทิ้งจำนวนมาก เศษไม้เหล่านี้มักถูกกำจัดทิ้งหรือนำไปขายในราคาต่ำ ซึ่งนอกจากจะเป็นการสูญเสียทรัพยากรแล้วยังส่งผลกระทบต่อสิ่งแวดล้อม เช่น การเพิ่มปริมาณขยะและปัญหาการตัดไม้ทำลายป่า โครงการนี้จึงมีแนวคิดในการนำเศษไม้เหล่านี้มาออกแบบและผลิตเป็นของเล่นเชิงการศึกษาที่ช่วยเสริมสร้างพัฒนาการของเด็ก โดยมุ่งเน้นให้เป็นของเล่นที่ปลอดภัยและเป็นมิตรต่อสิ่งแวดล้อม นอกจากนี้ โครงการนี้ยังสอดคล้องกับแนวคิดเศรษฐกิจหมุนเวียน (Circular Economy) ที่มุ่งเน้นการใช้ทรัพยากรอย่างคุ้มค่าและลดขยะ ด้วยการนำวัสดุเหลือใช้กลับมาใช้ใหม่ (Upcycling) อีกทั้งยังแสดงให้เห็นถึงความสำคัญของการออกแบบอย่างรับผิดชอบ ที่สามารถสร้างมูลค่าเพิ่มจากวัสดุที่ถูกมองข้ามได้อย่างสร้างสรรค์

Other Innovations

Development of Carbon Nanofiber Composite Materials for Supercapacitors in Energy Storage

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Development of Carbon Nanofiber Composite Materials for Supercapacitors in Energy Storage

This study presents the development of carbon-based multiphase metal oxide nanocomposites (CNF@MOx; M = Ag, Mn, Bi, Fe) incorporating silver, manganese, bismuth, and iron nanoparticles within polyacrylonitrile (PAN)-derived carbon nanofibers. These nanocomposites were fabricated via the electrospinning technique followed by annealing in an argon atmosphere. The resulting nanofibers exhibited a uniform structure, with diameters ranging from 559 to 830 nm and embedded nanoparticles of 9-21 nm. Structural characterization confirmed the presence of various oxidation states of metal oxides, which play a crucial role in charge storage mechanisms. Electrochemical performance testing demonstrated that CNF@Ag/Mn/Bi/Fe-20 achieved the highest specific capacitance of 156 F g⁻¹ at a scan rate of 2 mV s⁻¹ and exhibited excellent cycling stability, retaining over 96% of its capacitance after 1400 charge-discharge cycles. The synergistic combination of electric double-layer capacitance and redox-based charge storage enhances the performance of these nanofibers as promising electrode materials for supercapacitor applications.

Read more
Website design to help graduates manage food expenses and compliance with proper nutritional principles

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Website design to help graduates manage food expenses and compliance with proper nutritional principles

With the current cost of living situation in Thailand continuously rising, many recent graduates face challenges in managing their expenses in alignment with the increasing living costs. Food expenses, even for common street food, continue to surge with no sign of decreasing, despite improvements in raw material costs. Pay-Attention is a website platform designed to help recent graduates gain insights into managing and optimizing their food expenses effectively. It provides guidance on how to spend wisely, ensuring cost-effectiveness while maintaining adequate daily nutritional intake, without falling into monotonous eating habits.

Read more
A Unified Framework for Automated Captioning and Damage Segmentation in Car Damage Analysis

คณะเทคโนโลยีสารสนเทศ

A Unified Framework for Automated Captioning and Damage Segmentation in Car Damage Analysis

This research presents a deep learning method for generating automatic captions from the segmentation of car part damage. It analyzes car images using a Unified Framework to accurately and quickly identify and describe the damage. The development is based on the research "GRiT: A Generative Region-to-text Transformer for Object Understanding," which has been adapted for car image analysis. The improvement aims to make the model generate precise descriptions for different areas of the car, from damaged parts to identifying various components. The researchers focuses on developing deep learning techniques for automatic caption generation and damage segmentation in car damage analysis. The aim is to enable precise identification and description of damages on vehicles, there by increasing speed and reducing the work load of experts in damage assessment. Traditionally, damage assessment relies solely on expert evaluations, which are costly and time-consuming. To address this issue, we propose utilizing data generation for training, automatic caption creation, and damage segmentation using an integrated framework. The researchers created a new dataset from CarDD, which is specifically designed for cardamage detection. This dataset includes labeled damages on vehicles, and the researchers have used it to feed into models for segmenting car parts and accurately labeling each part and damage category. Preliminary results from the model demonstrate its capability in automatic caption generation and damage segmentation for car damage analysis to be satisfactory. With these results, the model serves as an essential foundation for future development. This advancement aims not only to enhance performance in damage segmentation and caption generation but also to improve the model’s adaptability to a diversity of damages occurring on various surfaces and parts of vehicles. This will allow the system to be applied more broadly to different vehicle types and conditions of damage inthe future

Read more