KMITL Innovation Expo 2025 Logo

Biodiversity of soil microorganisms

Biodiversity of soil microorganisms

Abstract

Soil is home to a diverse array of living organisms that interact within a complex food web, facilitating energy and nutrient cycling essential for sustaining life above ground. Among these organisms, soil microbes play a crucial role in supporting plant growth. Beneficial microorganisms enhance nutrient availability, improve soil structure by increasing porosity, and strengthen plant resistance to diseases. Conversely, harmful microorganisms, such as plant pathogens, can hinder plant growth and reduce crop yields when present in high concentrations. Neutral microorganisms, which naturally inhabit the soil, contribute to the soil ecosystem without directly impacting plants. A single teaspoon of soil contains over a billion microorganisms, yet only about 1% of them can be cultured in laboratory conditions. This highlights soil as one of the richest reservoirs of microbial diversity on Earth.

Objective

ในดินมีสิ่งมีชีวิตหลากหลายชนิดซึ่งมีความสัมพันธ์กันเป็นสายใยอาหารขนาดใหญ่ที่ทำให้เกิดการหมุนเวียนพลังงานและสารอาหารไปยังสิ่งมีชีวิตที่อาศัยอยู่บนดิน สิ่งมีชีวิตในดินทำหน้าที่สร้างอาหารสำหรับพืชเพื่อใช้ในการเจริญเติบโต ดินมีลักษณะเป็นรูพรุน มีทั้งน้ำ อากาศ ธาตุอาหารต่างๆ จึงเป็นแหล่งที่อยู่อาศัยของสิ่งมีชีวิตหลากหลายชนิด ซึ่งสิ่งมีชีวิตแต่ละชนิดจะมีบทบาทหลากหลายแตกต่างกันไป กลุ่มสิ่งมีชีวิตที่พบในดินได้แก่

Other Innovations

Astaxanthin-rich Oil Extracted with Ultrasound Assisted-Natural Deep Eutectic Solvent from the Byproduct of Black Tiger Shrimp (Panaeus monodon).

คณะอุตสาหกรรมอาหาร

Astaxanthin-rich Oil Extracted with Ultrasound Assisted-Natural Deep Eutectic Solvent from the Byproduct of Black Tiger Shrimp (Panaeus monodon).

The study investigated the extraction of astaxanthin-rich oil from shrimp waste biomass, a valuable byproduct rich in functional lipids and proteins. Wet rendering has long been an inexpensive method to extract oil, however the high temperatures and long cooking times negatively affect the amount of astaxanthin. On the other hand, the study looked into employing deep eutectic solvent as a green solvent and combining a wet rendering process with high-shear homogenization and high-frequency ultrasound-assisted extractions. DES-UAE at 60% amplitude and wet rendering at 60 °C were found to be the ideal conditions, as were DES-HAE at 13,000 rpm and wet rendering at 60 °C. With a notable increase in oil yields of 16.80% and 20.12%, respectively, and improved oil quality (lower acid and peroxide values) in comparison to the conventional wet rendering, experimental validation validated the effectiveness of the DES-HAE and DES-UAE procedures. DES-UAE notably raised the amount of astaxanthin. This study demonstrates that DES-HAE and DES-UAE are quicker, lower-temperature substitutes for obtaining premium, astaxanthin-rich shrimp oil, resulting in more effective use of this priceless byproduct.

Read more
THE DEVELOPMENT OF DENDROCALAMUS ASPER BLENDED FIBER FOR ECO-FRIENDLY TEXTILE PRODUCT DESIGN

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

THE DEVELOPMENT OF DENDROCALAMUS ASPER BLENDED FIBER FOR ECO-FRIENDLY TEXTILE PRODUCT DESIGN

This research confirms the potential of bamboo fiber as a sustainable raw material for the textile industry, demonstrating exceptional properties that meet both functional requirements and environmental friendliness. The study focuses on integrating sustainability concepts with material innovation, encompassing fiber property analysis, production process development, and product design. The research objectives were to: 1) develop the properties of bamboo fiber for production; 2) study factors in designing environmentally friendly textile products from bamboo fiber; and 3) forecast future prospects for environmentally friendly textile product design using bamboo fiber. The findings revealed that 60-day-old bamboo possessed optimal properties for fiber separation, with an average fiber size of 5.32 μm, smaller than other natural fibers, resulting in superior moisture absorption and ventilation properties. When blended with recycled polyester fiber in a 30:70 ratio, the yarn exhibited strength and unique tactile characteristics. Although the antibacterial properties against Staphylococcus aureus were low, the fibers demonstrated excellent whiteness and softness. Factor analysis identified four key components in product design: Local Materials, Green Products, Healthy, and Sustainability. Consumer satisfaction evaluation of the prototype products showed high levels of acceptance, with the model explaining 84.7% of consumer satisfaction. The developed production process reduced chemical usage and hazardous waste. Furthermore, utilizing fast-growing bamboo minimized long-term environmental impact, contributing to sustainable development in Thailand's rural communities across economic, environmental, and occupational stability dimensions. The research demonstrates that developing bamboo fiber blended with recycled polyester creates sustainable products that meet consumer demands for health consciousness, local material utilization, and green product promotion. Commercial implementation of these products can enhance economic value and promote environmentally friendly product development in the future.

Read more
Investigation of the Optimal Ratio of Ginger, Banana Flower, and Roselle in Liposomal Encapsulation to Enhance Antioxidant Activity and Total Phenolic Content

คณะอุตสาหกรรมอาหาร

Investigation of the Optimal Ratio of Ginger, Banana Flower, and Roselle in Liposomal Encapsulation to Enhance Antioxidant Activity and Total Phenolic Content

The growing interest in antioxidant-rich foods is driven by their potential to reduce the risk of chronic diseases such as cancer, cardiovascular conditions, and cellular degeneration. Ginger (Zingiber officinale), banana inflorescence (Musa paradisiaca L.), and roselle (Hibiscus sabdariffa L.) are herbal plants known for their high phenolic content, a crucial component in antioxidant activity. However, the bioactive compounds in these plants are often unstable when exposed to light, temperature, and oxygen, leading to a reduction in their efficacy. This study aims to investigate the optimal ratio of ginger, banana inflorescence, and roselle for encapsulation in liposomes—a technique designed to enhance the stability of bioactive compounds and improve their delivery efficacy. The research evaluates the antioxidant activity of the extracts using DPPH, ABTS, and FRAP methods, alongside total phenolic content (TPC) measurement. The most effective ratio for antioxidant activity will be selected for liposomal encapsulation, employing phospholipids as key structural components. The encapsulation efficiency (EE%) will be calculated to assess the effectiveness of the liposomal delivery system. The findings are expected to identify the optimal combination of ginger, banana inflorescence, and roselle that maximizes antioxidant potency and enhances the stability of bioactive compounds through liposomal encapsulation. This approach offers a promising strategy for developing herbal health supplements that maintain their biological properties over time.

Read more