KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Biodiversity of soil microorganisms

Biodiversity of soil microorganisms

Abstract

Soil is home to a diverse array of living organisms that interact within a complex food web, facilitating energy and nutrient cycling essential for sustaining life above ground. Among these organisms, soil microbes play a crucial role in supporting plant growth. Beneficial microorganisms enhance nutrient availability, improve soil structure by increasing porosity, and strengthen plant resistance to diseases. Conversely, harmful microorganisms, such as plant pathogens, can hinder plant growth and reduce crop yields when present in high concentrations. Neutral microorganisms, which naturally inhabit the soil, contribute to the soil ecosystem without directly impacting plants. A single teaspoon of soil contains over a billion microorganisms, yet only about 1% of them can be cultured in laboratory conditions. This highlights soil as one of the richest reservoirs of microbial diversity on Earth.

Objective

ในดินมีสิ่งมีชีวิตหลากหลายชนิดซึ่งมีความสัมพันธ์กันเป็นสายใยอาหารขนาดใหญ่ที่ทำให้เกิดการหมุนเวียนพลังงานและสารอาหารไปยังสิ่งมีชีวิตที่อาศัยอยู่บนดิน สิ่งมีชีวิตในดินทำหน้าที่สร้างอาหารสำหรับพืชเพื่อใช้ในการเจริญเติบโต ดินมีลักษณะเป็นรูพรุน มีทั้งน้ำ อากาศ ธาตุอาหารต่างๆ จึงเป็นแหล่งที่อยู่อาศัยของสิ่งมีชีวิตหลากหลายชนิด ซึ่งสิ่งมีชีวิตแต่ละชนิดจะมีบทบาทหลากหลายแตกต่างกันไป กลุ่มสิ่งมีชีวิตที่พบในดินได้แก่

Other Innovations

Wildland Fire Fighter Suit

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Wildland Fire Fighter Suit

The forest firefighting suit consists of the following components and uses: The forest firefighting suit is designed and developed to be suitable for the behavior of the officers and the conditions of the work area, consisting of a shirt and pants. The material used in the sewing of the suit is aramid fabric, which has the property of being able to prevent the spread of fire, to prevent the officers from burning while performing their duties in the event that the forest fire spreads close to them, which is different from the current suits that cannot prevent fires. The shirt is designed with a mesh on the side of the body to release internal heat so that air can circulate well. The sleeves at the elbows have a support point to prevent contact with the ground or obstacles. The collar has a slot for a portable fan and a fan air circulation channel on the back, which can be turned on while performing forest firefighting duties, helping to prevent the body temperature from getting too hot, reducing the risk of heatstroke. When the fan battery runs out, it can be removed for charging and put back in when needed. The pants are designed with mesh on the inside or in blind spots to release internal heat so that air can circulate well. The pants at the knees have a support point to prevent contact with the ground or obstacles. The forest firefighting suit, consisting of a shirt and pants, has been designed and developed to be able to be produced domestically, reducing imports from abroad

Read more
INTELLIGENT  ANTI – ROBBERY  POLICE  SYSTEM  IN  CHACHOENGSAO

คณะวิศวกรรมศาสตร์

INTELLIGENT ANTI – ROBBERY POLICE SYSTEM IN CHACHOENGSAO

The project uses artificial intelligence (AI) and deep learning to develop a smart police system (Smart Police) to analyze the identity of individuals and vehicles suspected of involvement in crimes. The system uses CCTV cameras to detect people with concealed weapons and track vehicles involved in crimes. The system also sends alerts to the police when a crime is detected. The Smart Police system is a collaboration between the Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, the Provincial Police Region 2, the Chachoengsao Foundation for Development, and the Smart City Office of Chachoengsao Province. The system is designed to prevent and deter crime, increase public safety and order, and build a network of cooperation between the government, the private sector, and the community. The system is currently under development, but it has the potential to be a valuable tool for law enforcement. The system could help to reduce crime and improve public safety in Chachoengsao Province and other parts of Thailand.

Read more
PRODUCTION OF PYROLYSIS OIL FROM LANDFILLED PLASTIC WASTES FOR UTILIZATION AS A RENEWABLE FUEL

คณะวิทยาศาสตร์

PRODUCTION OF PYROLYSIS OIL FROM LANDFILLED PLASTIC WASTES FOR UTILIZATION AS A RENEWABLE FUEL

The aim of experiment was to study the pyrolysis oil derived from sorted landfill plastic waste that had been buried for 15 years by the Nonthaburi Provincial Administrative Organization. The pyrolysis oil was produced using a Fixed-Bed Reactor at 450 °C for 1.5 hours with LPG as the feedstock, with the goal of using the pyrolysis oil as an alternative fuel. The experiment was conducted under four different conditions : (1) plastic waste buried in a landfill that has not been washed but has been reduced in size, (2) plastic waste buried in a landfill that has been washed and has been reduced in size, (3) plastic waste buried in a landfill that not has been washed and has not been reduced in size, (4) plastic waste buried in a landfill that has not been washed and has been reduced size, with activated carbon used as a catalyst. The experiment revealed that three products were produced : Oil, gas, and char in different quantity. The pyrolysis oil were compared in terms of quality based on pH, Heating value, Moisture content, Functional group, and Chemical Composition. The pyrolysis oil we obtained will be referenced according to the criteria from the Department of Energy Business. The analysis results of the pyrolysis can explain which conditions are suitable for replacing fuel oil in industrial It is therefore one of the approaches that helps manage plastic waste in landfills, reducing the quantity by converting it into usable energy.

Read more