KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Biodiversity of soil microorganisms

Biodiversity of soil microorganisms

Abstract

Soil is home to a diverse array of living organisms that interact within a complex food web, facilitating energy and nutrient cycling essential for sustaining life above ground. Among these organisms, soil microbes play a crucial role in supporting plant growth. Beneficial microorganisms enhance nutrient availability, improve soil structure by increasing porosity, and strengthen plant resistance to diseases. Conversely, harmful microorganisms, such as plant pathogens, can hinder plant growth and reduce crop yields when present in high concentrations. Neutral microorganisms, which naturally inhabit the soil, contribute to the soil ecosystem without directly impacting plants. A single teaspoon of soil contains over a billion microorganisms, yet only about 1% of them can be cultured in laboratory conditions. This highlights soil as one of the richest reservoirs of microbial diversity on Earth.

Objective

ในดินมีสิ่งมีชีวิตหลากหลายชนิดซึ่งมีความสัมพันธ์กันเป็นสายใยอาหารขนาดใหญ่ที่ทำให้เกิดการหมุนเวียนพลังงานและสารอาหารไปยังสิ่งมีชีวิตที่อาศัยอยู่บนดิน สิ่งมีชีวิตในดินทำหน้าที่สร้างอาหารสำหรับพืชเพื่อใช้ในการเจริญเติบโต ดินมีลักษณะเป็นรูพรุน มีทั้งน้ำ อากาศ ธาตุอาหารต่างๆ จึงเป็นแหล่งที่อยู่อาศัยของสิ่งมีชีวิตหลากหลายชนิด ซึ่งสิ่งมีชีวิตแต่ละชนิดจะมีบทบาทหลากหลายแตกต่างกันไป กลุ่มสิ่งมีชีวิตที่พบในดินได้แก่

Other Innovations

A Metaverse System of Chalermphrakiat Innovation Building at King Mongkut's Memorial Park, KMITL

คณะเทคโนโลยีสารสนเทศ

A Metaverse System of Chalermphrakiat Innovation Building at King Mongkut's Memorial Park, KMITL

Traditional methods of public relations and learning often lack engagement and fail to provide users with a deep and immersive experience. Additionally, these methods struggle to reach a wide audience, especially those unable to visit the physical location. This project aims to solve the issues of accessibility and awareness regarding the institution’s Chalermphrakiat Hall and historical exhibition. Utilizing metaverse technology to simulate important locations allows users to explore the site and view key information in a virtual format, thereby enhancing the engagement of students staff alumni and the general public. The metaverse system is developed using Unity, a powerful game engine capable of supporting the creation of metaverse environments. This allows for the creation of an interactive and realistic virtual space. Unity also supports the management of physics, lighting, and sound, further enhancing realism. Additionally, the system is integrated with web browsers using WebGL technology, enabling the project developed in Unity to be accessed directly through a browser. Users can visit and interact with the metaverse environment from anywhere without the need to install additional software. The developers have thus created the metaverse system to provide a realistic and engaging learning experience, enhancing public relations efforts and fostering a strong connection with the institution efficiently.

Read more
Urban Farming Innovation Learning Center

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Urban Farming Innovation Learning Center

From the current situation and uncertainty; leads to the concept of food security. It is the application of innovation and technology to create high productivity in a limited area. The unused buildings in urban areas were renovated for planting, created as a learning area for planting in urban area. The different methods of growing plants were presented. There are 35 planting innovations for disseminating knowledge, to create food security, self-reliant, supports sustainable living.

Read more
Selection of landrace rice varieties resistant to saline soil

คณะเทคโนโลยีการเกษตร

Selection of landrace rice varieties resistant to saline soil

Rice is a salt-sensitive crop. The objective of this study was to evaluate the effect of salinity at flowering stage on physiological traits and yield of landrace rice. The experiment design was 4*10 Factorial in RCBD with 4 replications. Factor A was four salinity levels: control, 6, 12 and 16 dS/m; Factor B was 10 rice varieties. Data were collected on physiological traits and grain yield. The results showed that increasing salinity level decreased rice yield. The highest yield reduction was found when the rice received salt stress at 16 dS/m. In addition, rice varieties showed different yield performance when exposed to salt stress. In this found that Hom Yai variety had the lowest yield reduction when grown at 16 dS/m salinity level and did not differ from salt tolerant check variety.

Read more