KMITL Innovation Expo 2025 Logo

TOOTHBRUSH APPEARANCE FACTORS THAT AFFECT BABY BOOMERS' PURCHASING DECISIONS

Abstract

This study aims to identify the toothbrush appearance factors that affect baby boomers purchasing decisions. The research divide into three stages: The first stage is to classify the toothbrush appearance factors through a review of literature, research, and examining toothbrushes currently available on the market, summarizing them as appearance factors. The second stage is to summarize the results of the toothbrush appearance factors to create a multiple-choice questionnaire in three dimensions: purchasing decisions, aesthetics, and functionality. Collecting data from a group of 30 Baby Boomers aged 57-75 years old. The last stage is to summarize the three dimensions of appearance factors affecting baby boomers' toothbrush purchasing decisions and report as percentages and rank them. The research findings indicate that the most significant toothbrush appearance factor is a "Curved handle," accounting for 80%, followed by “Multi-level bristles” at 70%, a "Rubber thumb rest" at 53.3%, "Handle divided into more than two parts" at 50%, and “Offset shape” at 40%, respectively. In terms of the reason for purchasing decision based on various factors are as follows: the curved handle and offset shape give a sense of purchase with its aesthetic, While the selection of multi-level bristles, the Rubber thumb rest, and the handle divided into more than two parts due to functionality.

Objective

เทรนด์ผู้สูงอายุเป็นเทรนด์ที่ได้รับความสนใจเป็นอย่างมาก แต่แบรนด์ส่วนใหญ่ยังไม่ปรับตัวเพื่อให้เหมาะกับเทรนด์ผู้สูงอายุอย่างชัดเจน ข้อมูลการออกแบบจากโครงการนี้จึงเป็นประโยชน์ต่อนักออกแบบและธุรกิจที่กำลังสนใจกลุ่มผู้สูงอายุซึ่งกำลังมีสัดส่วนที่มากขึ้นเรื่อยๆในประเทศไทย ผู้วิจัยจึงสนใจทำการเก็บข้อมูลและวิเคราะห์ปัจจัยรูปร่างภายนอกที่มีผลต่อการตัดสินใจซื้อแปรงสีฟันของประชากรกลุ่มเบบี้บูมเมอร์ เพื่อเป็นฐานข้อมูลที่อาจเป็นประโยชน์ต่อผู้ประกอบหรือนักออกแบบต่อไป

Other Innovations

THE DEVELOPMENT OF DENDROCALAMUS ASPER BLENDED FIBER FOR ECO-FRIENDLY TEXTILE PRODUCT DESIGN

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

THE DEVELOPMENT OF DENDROCALAMUS ASPER BLENDED FIBER FOR ECO-FRIENDLY TEXTILE PRODUCT DESIGN

This research confirms the potential of bamboo fiber as a sustainable raw material for the textile industry, demonstrating exceptional properties that meet both functional requirements and environmental friendliness. The study focuses on integrating sustainability concepts with material innovation, encompassing fiber property analysis, production process development, and product design. The research objectives were to: 1) develop the properties of bamboo fiber for production; 2) study factors in designing environmentally friendly textile products from bamboo fiber; and 3) forecast future prospects for environmentally friendly textile product design using bamboo fiber. The findings revealed that 60-day-old bamboo possessed optimal properties for fiber separation, with an average fiber size of 5.32 μm, smaller than other natural fibers, resulting in superior moisture absorption and ventilation properties. When blended with recycled polyester fiber in a 30:70 ratio, the yarn exhibited strength and unique tactile characteristics. Although the antibacterial properties against Staphylococcus aureus were low, the fibers demonstrated excellent whiteness and softness. Factor analysis identified four key components in product design: Local Materials, Green Products, Healthy, and Sustainability. Consumer satisfaction evaluation of the prototype products showed high levels of acceptance, with the model explaining 84.7% of consumer satisfaction. The developed production process reduced chemical usage and hazardous waste. Furthermore, utilizing fast-growing bamboo minimized long-term environmental impact, contributing to sustainable development in Thailand's rural communities across economic, environmental, and occupational stability dimensions. The research demonstrates that developing bamboo fiber blended with recycled polyester creates sustainable products that meet consumer demands for health consciousness, local material utilization, and green product promotion. Commercial implementation of these products can enhance economic value and promote environmentally friendly product development in the future.

Read more
Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

คณะวิทยาศาสตร์

Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

Bacteriocins are microbial peptides that demonstrate potency against pathogens. This study evaluated the inhibitory effects on pathogens and characterized the bacteriogenomic profile of strain TKP1-5, isolated from the feces of Anas platyrhynchos domesticus. Strain TKP1-5 was characterized using phenotypic traits, 16S rRNA sequencing, and Whole-Genome Sequencing (WGS). It exhibited growth in the presence of 2-6% NaCl, temperatures of 25-45°C, and pH levels ranging from 3 to 9. Based on ANIb, ANIm, and dDDH values, strain TKP1-5 was identified as Lactococcus lactis. Whole genome analysis revealed that strain TKP1-5 harbors the Nisin Z peptide gene cluster with a bit-score of 114.775. The antimicrobial spectrum of bacteriocin TKP1-5 showed inhibitory effects against pathogenic bacteria including Pediococcus pentosaceus JCM5885, Listeria monocytogenes ATCC 19115, Enterococcus faecalis JCM 5803T, Salmonella Typhimurium ATCC 13311ᵀ, Aeromonas hydrophila B1 AhB1, Streptococcus agalactiae 1611 and Streptococcus cowan I. Genomic analysis confirmed L. lactis TKP1-5 as a non-human pathogen without antibiotic resistance genes or plasmids. Furthermore, L. lactis TKP1-5 contains potential genes associated with various probiotic properties and health benefits. This suggests that L. lactis TKP1-5, with its antibacterial activity and probiotic potential, could be a promising candidate for further research and application in the food industry.

Read more
DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF  AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

คณะวิทยาศาสตร์

DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.

Read more