KMITL Innovation Expo 2025 Logo

The product "Nai Hoi Hua Fu"

The product "Nai Hoi Hua Fu"

Abstract

Study on Parasites in Blackchin Tilapia and Value-Added Processing Parasites play a crucial role in affecting fish health and the balance of marine ecosystems. The study of parasites in fish is essential for assessing fish population status and their impact on the ecosystem. This research focuses on a preliminary survey of parasites in Blackchin Tilapia (Sarotherodon melanotheron) found in the waters of Chumphon Province to determine whether this species carries parasitic infections. The findings will provide valuable insights for managing marine resources and developing strategies for processing Blackchin Tilapia into food products to help control its population in the ecosystem. One of the value-added processing approaches for Blackchin Tilapia is the "Nai Hoi Hua Fu" product. This product involves deep-frying the fish to achieve a crispy and fluffy texture before mixing it with mango salad to enhance its flavor and make it more appealing. This processing method not only adds value to the fish but also serves as a practical solution for managing the Blackchin Tilapia population, which may impact the ecosystem. The study results indicate that no parasitic infections were found in either the internal or external organs of the sampled fish, suggesting that the marine environment in the study area is favorable for fish health. However, continuous research is recommended to monitor long-term ecological changes and evaluate the impact of Blackchin Tilapia on ecosystem balance to ensure sustainable resource management.

Objective

มีการแพร่ระบาดปลาหมอคางดำ ในพื้นที่จังหวัดชุมพร โดยเฉพาะปากแม่น้ำ ดังนั้น จึงมีความสนใจว่าปลาชนิดนี้แพร่กระจายลงสู่ทะเลหรือไม จึงสำรวจพร้มอศึกาาาการติดเชื้อปรสิต เนื่องจากอยากทราบว่าทำไมถึงแพร่กระจายในระบบนิเวศเร็วมาก และสามารถนำมารับประทานได้หรือไม่

Other Innovations

Analysis of Factors Affecting Productivity Improvement in Sugarcane Processing Plants.

คณะวิทยาศาสตร์

Analysis of Factors Affecting Productivity Improvement in Sugarcane Processing Plants.

Sugar production from sugarcane is a complex process that requires precise control. One of the major issues is sugar loss, which can result from various factors, particularly "burnt cane," before being sent to the mill. This affects the quality of the sugarcane and the efficiency of sugar extraction, along with the performance of the machinery and the properties of the cane, which impact the amount of sugar extracted. This study aims to analyze the factors that influence sugar loss in the sugar production process, using quantitative data from a sugar factory. Nine variables were examined, including mechanical efficiency, machine downtime per day, cane waiting time per day, sand content in cane juice, pol extraction efficiency, overall working time efficiency, cane juice purity, cane sugar content (C.C.S.), and burnt cane. The data were analyzed using correlation analysis to examine relationships between variables and regression modeling to predict sugar loss. The results showed that mechanical efficiency, cane sugar content, and the amount of sand or impurities in the cane juice were significantly correlated with sugar loss. Mechanical efficiency had a direct relationship with the amount of cane milled, which improved sugar production. On the other hand, burnt cane, or cane that was burnt before harvesting, resulted in reduced sugar extraction and impacted the quality of the sugar. Therefore, reducing sugar loss in the production process can be achieved by improving machine efficiency, reducing impurities in cane juice, and managing burnt cane, which will improve sugar production efficiency in the future.

Read more
Development of the intelligent indicator label for monitoring rancidity of deep fried foods

คณะวิศวกรรมศาสตร์

Development of the intelligent indicator label for monitoring rancidity of deep fried foods

The production process of the food rancidity indicator label consists of three main steps: 1) preparation of the indicator solution, 2) preparation of the cellulose solution, and 3) formation of the sheet. The indicator solution includes bromothymol blue and methyl red, which act as indicators. The cellulose solution consists of hydroxypropyl methylcellulose, carboxymethyl cellulose, sodium hydroxide, polyethylene glycol 400, and the indicator solution. For the sheet formation, the cellulose solution was mixed with natural latex to increase flexibility and impart hydrophobic properties. After drying, the invention appears as a thin, dark blue label. When exposed to volatile compounds from rancid food, the label changes color from dark blue to green, and then to yellow, corresponding to the increasing amount of volatile compounds from the rancid food.

Read more
Comparison of greenhouse system optimum to potted petunia production

คณะเทคโนโลยีการเกษตร

Comparison of greenhouse system optimum to potted petunia production

-

Read more