Study on Parasites in Blackchin Tilapia and Value-Added Processing Parasites play a crucial role in affecting fish health and the balance of marine ecosystems. The study of parasites in fish is essential for assessing fish population status and their impact on the ecosystem. This research focuses on a preliminary survey of parasites in Blackchin Tilapia (Sarotherodon melanotheron) found in the waters of Chumphon Province to determine whether this species carries parasitic infections. The findings will provide valuable insights for managing marine resources and developing strategies for processing Blackchin Tilapia into food products to help control its population in the ecosystem. One of the value-added processing approaches for Blackchin Tilapia is the "Nai Hoi Hua Fu" product. This product involves deep-frying the fish to achieve a crispy and fluffy texture before mixing it with mango salad to enhance its flavor and make it more appealing. This processing method not only adds value to the fish but also serves as a practical solution for managing the Blackchin Tilapia population, which may impact the ecosystem. The study results indicate that no parasitic infections were found in either the internal or external organs of the sampled fish, suggesting that the marine environment in the study area is favorable for fish health. However, continuous research is recommended to monitor long-term ecological changes and evaluate the impact of Blackchin Tilapia on ecosystem balance to ensure sustainable resource management.
มีการแพร่ระบาดปลาหมอคางดำ ในพื้นที่จังหวัดชุมพร โดยเฉพาะปากแม่น้ำ ดังนั้น จึงมีความสนใจว่าปลาชนิดนี้แพร่กระจายลงสู่ทะเลหรือไม จึงสำรวจพร้มอศึกาาาการติดเชื้อปรสิต เนื่องจากอยากทราบว่าทำไมถึงแพร่กระจายในระบบนิเวศเร็วมาก และสามารถนำมารับประทานได้หรือไม่
คณะวิศวกรรมศาสตร์
The integration of intelligent robotic systems into human-centric environments, such as laboratories, hospitals, and educational institutions, has become increasingly important due to the growing demand for accessible and context-aware assistants. However, current solutions often lack scalability—for instance, relying on specialized personnel to repeatedly answer the same questions as administrators for specific departments—and adaptability to dynamic environments that require real-time situational responses. This study introduces a novel framework for an interactive robotic assistant (Beckerle et al. , 2017) designed to assist during laboratory tours and mitigate the challenges posed by limited human resources in providing comprehensive information to visitors. The proposed system operates through multiple modes, including standby mode and recognition mode, to ensure seamless interaction and adaptability in various contexts. In standby mode, the robot signals readiness with a smiling face animation while patrolling predefined paths or conserving energy when stationary. Advanced obstacle detection ensures safe navigation in dynamic environments. Recognition mode activates through gestures or wake words, using advanced computer vision and real-time speech recognition to identify users. Facial recognition further classifies individuals as known or unknown, providing personalized greetings or context-specific guidance to enhance user engagement. The proposed robot and its 3D design are shown in Figure 1. In interactive mode, the system integrates advanced technologies, including advanced speech recognition (ASR Whisper), natural language processing (NLP), and a large language model Ollama 3.2 (LLM Predictor, 2025), to provide a user-friendly, context-aware, and adaptable experience. Motivated by the need to engage students and promote interest in the RAI department, which receives over 1,000 visitors annually, it addresses accessibility gaps where human staff may be unavailable. With wake word detection, face and gesture recognition, and LiDAR-based obstacle detection, the robot ensures seamless communication in English, alongside safe and efficient navigation. The Retrieval-Augmented Generation (RAG) human interaction system communicates with the mobile robot, built on ROS1 Noetic, using the MQTT protocol over Ethernet. It publishes navigation goals to the move_base module in ROS, which autonomously handles navigation and obstacle avoidance. A diagram is explained in Figure 2. The framework includes a robust back-end architecture utilizing a combination of MongoDB for information storage and retrieval and a RAG mechanism (Thüs et al., 2024) to process program curriculum information in the form of PDFs. This ensures that the robot provides accurate and contextually relevant answers to user queries. Furthermore, the inclusion of smiling face animations and text-to-speech (TTS BotNoi) enhanced user engagement metrics were derived through a combination of observational studies and surveys, which highlighted significant improvements in user satisfaction and accessibility. This paper also discusses capability to operate in dynamic environments and human-centric spaces. For example, handling interruptions while navigating during a mission. The modular design allows for easy integration of additional features, such as gesture recognition and hardware upgrades, ensuring long-term scalability. However, limitations such as the need for high initial setup costs and dependency on specific hardware configurations are acknowledged. Future work will focus on enhancing the system’s adaptability to diverse languages, expanding its use cases, and exploring collaborative interactions between multiple robots. In conclusion, the proposed interactive robotic assistant represents a significant step forward in bridging the gap between human needs and technological advancements. By combining cutting-edge AI technologies with practical hardware solutions, this work offers a scalable, efficient, and user-friendly system that enhances accessibility and user engagement in human-centric spaces.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
In the world of blood donation, there are 2 types of people: those who donate blood and those who don't. Most campaigners emphasize how to persuade more people to donate blood and recruit more new blood donors. We believe that even though such focus is important, there're more critical aspects that might have been neglected, which is: for those who have already made up their minds to be blood doners, will they be successful in donating when the time comes? According to our studies, only 63 % of attempted doners are successful. Regrettably, 37 % has to go home disappointed as their bodies are not fit for the conditions required by Red Cross medical staff at blood donation centers (which include some most basic preparations such as low-fat food intake and 8-hours sleep on the night before). Our campaign, ‘Blood in Need, Buddy Indeed’, focuses on 2 aspects. Firstly, to persuade more people to donate blood. Secondly, for those who have made up their minds to donate blood, we will provide necessary support (both body and mind) so that they are fully prepared and successful in donating blood when the time comes via networks of systems, staffs and the newly designed and prototype of the application ‘Blood D’. Our campaign covers the whole ‘before/during/after’ experience of users (as blood doners). Support includes assessment of their current condition whether they are within the requirement of Red Cross Blood Bank. ‘Blood D’ will also provide relevant information on blood donating events, such as locations, and time booking. Once sign-up, the application “Blood D” will sent friendly reminder and clear infographic on how to prepare their bodies as daily notifications during the 7 days countdown. This is to ensure that the users’ blood will be ‘D’ (homophone of the Thai word ‘ดี’ which mean ‘good’ and at the same time playing on the word ‘ Buddy’) or be the ‘good blood’ that can save lives for those in need. After organizing 4 blood donation events both within and outside the KMITL. The numbers of successful blood doners have increased from 63 % to 78 % (this number is the average of 4 events, with the most successful event of 89%). The campaign has won the first runner up in national blood donation campaign competition. It is highly anticipated that once the application “Blood D” is fully launched, it will help increase the amount of blood collected up to 15% with the same numbers of existing doners.
คณะอุตสาหกรรมอาหาร
This research aims to optimize the production process of gamma-aminobutyric acid (GABA) in fermented pineapple juice using probiotics and acetic acid bacteria (AAB), which are microorganisms with the potential to enhance GABA levels. This process has been developed to improve the nutritional value of fermented pineapple juice and to increase the economic value of Thai pineapples, which have long suffered from low market prices. This study focuses on determining the optimal conditions for GABA production by examining factors such as sugar content, pH levels, fermentation duration, and L-glutamate concentration, as well as the co-cultivation of probiotics and acetic acid bacteria. The experiments are conducted using controlled fermentation techniques, and the bioactive components of the fermented juice are analyzed with advanced instruments such as HPLC and GC-MS. The findings of this research are expected to contribute to the development of formulations and production processes for a high-GABA pineapple-based functional beverage. This product could offer health benefits such as stress reduction, cognitive function enhancement, and relaxation while also strengthening the potential of Thailand’s fermented food and beverage industry.