KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Development of the intelligent indicator label for monitoring rancidity of deep fried foods

Development of the intelligent indicator label for monitoring rancidity of deep fried foods

Abstract

The production process of the food rancidity indicator label consists of three main steps: 1) preparation of the indicator solution, 2) preparation of the cellulose solution, and 3) formation of the sheet. The indicator solution includes bromothymol blue and methyl red, which act as indicators. The cellulose solution consists of hydroxypropyl methylcellulose, carboxymethyl cellulose, sodium hydroxide, polyethylene glycol 400, and the indicator solution. For the sheet formation, the cellulose solution was mixed with natural latex to increase flexibility and impart hydrophobic properties. After drying, the invention appears as a thin, dark blue label. When exposed to volatile compounds from rancid food, the label changes color from dark blue to green, and then to yellow, corresponding to the increasing amount of volatile compounds from the rancid food.

Objective

กลิ่นหืน (rancidity) เป็นกลิ่นผิดปกติของไขมันหรือน้ำมัน ที่แสดงถึงการเสื่อมเสียของอาหาร (food spoilage) เนื่องจากปฏิกิริยาทางเคมีในผลิตภัณฑ์ที่มีไขมันหรือน้ำมันเป็นองค์ประกอบเป็นดัชนีสำคัญต่ออายุการเก็บรักษา กลิ่นหืนเกิดจากปฏิกิริยาออกซิเดชันของลิพิด (lipid oxidation) ในรูปของไตรกลีเซอไรด์ (triglyceride) ที่มีกรดไขมันชนิดไม่อิ่มตัว (unsaturated fatty acid) ที่ตำแหน่งพันธะคู่ ผลจากปฏิกิริยานี้ทำให้เกิดสารที่ให้กลิ่นและรสที่ผิดปกติที่เรียกว่ากลิ่นหืน การหืนเป็นปฏิกิริยาลูกโซ่ (chain reaction) เพราะอนุมูลอิสระ (free radical) ที่เกิดขึ้นจะกระตุ้นโมเลกุลกรดไขมันที่เหลือให้เกิดปฏิกิริยาต่อไป ปฏิกิริยาออกซิเดชันของลิพิดแบ่งได้เป็น 3 ช่วง คือ 1) ขั้นเริ่มต้นเพื่อก่อให้เกิดอนุมูลอิสระ (initiation) 2) ขั้นเกิดปฏิกิริยาลูกโซ่ (propagation) และ 3) ขั้นยุติที่อนุมูลอิสระทำปฏิกิริยากันเอง (termination) ทำให้มีกลิ่นหืนจากสารแอลดีไฮด์ แอลกอฮอล์ ฟูแรน และกรดที่ผลิตขึ้น โดยสารเฮกซานาลซึ่งเป็นสารกลุ่มแอลดีไฮด์มักใช้เป็นตัวบ่งชี้การเกิดการหืนในอาหาร สารที่เกิดจากการหืนเหล่านั้นมีผลต่อคุณภาพอาหารและสุขภาพของผู้บริโภค ทำให้คุณภาพของอาหารเสื่อมลง สมบัติทางกายภาพและทางเคมีเปลี่ยนแปลง อาหารมีสีผิดปกติ กลิ่นรสและลักษณะเนื้อสัมผัสของอาหารเปลี่ยนแปลง คุณค่าทางอาหารลดลง และบางครั้งอาจมีสารที่เป็นอันตรายต่อร่างกายเกิดขึ้นด้วย ปัจจุบันนี้ได้มีการศึกษาและพัฒนาการใช้ฉลากอัจฉริยะติดบนบรรจุภัณฑ์เพื่อบ่งบอกถึงคุณภาพของผลิตภัณฑ์แก่ผู้บริโภค เป็นนวัตกรรมที่คิดค้นขึ้นมาเพื่อเป็นเครื่องมือหนึ่งในการสร้างความน่าเชื่อถือและความมั่นใจให้กับผู้บริโภคซึ่งต้องการผลิตภัณฑ์อาหารที่มีความสด ใหม่ และปลอดภัย เพื่อช่วยให้ผู้บริโภคตัดสินใจเลือกซื้อผลิตภัณฑ์ต่าง ๆ ได้อย่างสะดวกและปลอดภัยมากขึ้น ในแง่ของผู้ขายก็เป็นการเพิ่มมูลค่าของสินค้าทำให้สามารถบริหารจัดการผลิตภัณฑ์ต่าง ๆ ได้ดียิ่งขึ้น เพราะจะทราบระยะเวลาที่ผลิตภัณฑ์ยังคงความสดใหม่และสามารถวางอยู่ที่ชั้นขายได้ ดังนั้นโครงการวิจัยนี้จึงเป็นการพัฒนาฉลากอัจฉริยะแสดงระดับความหืนของอาหารทอด ซึ่งมีวัตถุประสงค์หลักเพื่อ 1) ศึกษาการเปลี่ยนแปลงสมบัติทางเคมีฟิสิกส์ของอาหารทอดระหว่างการเก็บรักษา และ 2) พัฒนาฉลากแสดงระดับความหืนของอาหารทอดระหว่างการเก็บรักษา โดยมีวิธีการวิจัยดังนี้ ใช้ข้าวเกรียบทอดเป็นตัวแทนของอาหารทอด แล้ววิเคราะห์ปริมาณค่าเปอร์ออกไซด์ (peroxide value) ค่าความเป็นกรด (acid value) ค่ากรดไทโอบาร์บิทูริค (thiobarbituric acid) ค่ากรดไขมัน (fatty acids) ที่เปลี่ยนแปลงระหว่างการเก็บรักษาในสภาวะควบคุม รวมทั้งการพัฒนาฉลากเซนเซอร์อัจฉริยะที่ตรวจวัดปริมาณแอลดีไฮด์ที่เกิดจากการหืนแล้วแสดงค่าเป็นความเข้มสีต่าง ๆ ที่สอดคล้องกับปริมาณของระดับความหืน (หรือระดับค่าทางเคมีที่เกี่ยวข้อง) โดยใช้พอลิแซคคาไรด์ซึ่งเป็นพอลิเมอร์ธรรมชาติ ย่อยสลายได้ง่ายและไม่เป็นพิษต่อสิ่งแวดล้อมและผู้บริโภคเป็นวัสดุสำหรับสร้างแผ่นฉลาก และมีสีย้อมที่ทำหน้าที่เป็นเซนเซอร์ดักจับและทำปฏิกิริยากับผลิตภัณฑ์ที่เกิดจากการเหม็นหืนอย่างจำเพาะเป็นส่วนประกอบสำคัญ ในการวิจัยจะทำการพัฒนาฉลากอัจฉริยะให้มีว่องไวต่อการตรวจวัดการเหม็นหืนและคงความเสถียรของสีไว้ให้นาน จากนั้นหาความสัมพันธ์ระหว่างการทดสอบอาหารทอดด้วยประสาทสัมผัส (sensory test) กับการเปลี่ยนสีของฉลากอัจฉริยะ และสุดท้ายทำการทดสอบประสิทธิภาพของฉลากอัจฉริยะแสดงระดับความหืนของอาหารทอด และกำหนดค่าดัชนีชี้วัดระดับความหืนของอาหารทอดที่ทดลอง

Other Innovations

Effect of Packaging Thickness on Corn Silage Quality

คณะเทคโนโลยีการเกษตร

Effect of Packaging Thickness on Corn Silage Quality

Climate change and the increasing unpredictability of environmental conditions have aggravated the shortage of animal feed crops during the dry season. This study examines effect of packaging thickness on the quality of corn silage during long-term storage, to maintain its nutritional value during feed shortages. The results show that packaging with thicknesses of 80, 120, 150, and 200 microns effectively maintain good physical quality, including odor, texture, color, and pH levels, during the 0–21day storage period. The silage had a fermented like fruit flavor or vinegar flavor, a silage texture, and well-preserved leaves and stems. Its color remained yellowish-green, with pH values between 3.7 and 4.7. Additionally, lactic acid analysis found that silage in 200-micron-thick packaging for 21 days had the highest lactic acid content (5.64%). However, there were no significant differences in the nutritional value of the silage across different packaging thicknesses

Read more
Hydro IoT

คณะวิศวกรรมศาสตร์

Hydro IoT

A small hydroponic vegetable growing system simulation kit with water flow system that monitors, maintains and controls the amount of fertilizer in the system.

Read more
Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more