-
พิทูเนีย (petunia) มีชื่อวิทยาศาสตร์ว่า Petunia hybrida อยู่ในวงศ์ Solanaceae มีแหล่งกำเนิดในแถบทวีปอเมริกาใต้ (นันทิยา, 2535) เป็นไม้ดอกไม้ประดับที่นิยมปลูกกันอย่างแพร่หลายทั้งในและต่างประเทศ มีมูลค่าทางเศรษฐกิจในปี ค.ศ. 2019–2020 กว่า 60 ล้านดอลลาร์สหรัฐ (United States Department of Agriculture, 2020; 2021) พิทูเนียมีสายพันธุ์ที่หลากหลายทำให้มีคุณภาพดอก ทั้งสีและขนาดของดอกที่แตกต่างกัน (สุคนธ์ทิพย์ และคณะ, 2554) ต้นมีลักษณะเป็นพุ่มเตี้ย ค่อนไปทางไม้เลื้อย ใบคล้ายใบยาสูบแต่ขนาดเล็กกว่า มีขนปกคลุมผิวใบ ดอกมีสีสวยงามมักจะนิยมใช้เป็นไม้กระถางและไม้ประดับแปลง (สมเพียร, 2526) นอกจากนี้ดอกของพิทูเนียบางสายพันธุ์สามารถรับประทาน (Edible Flowers) และนำมาทำสีผสมอาหารได้ (บ้านและสวน, 2564; ออนไลน์) อีกทั้งพบสารประกอบฟีนอลิกมีฤทธิ์ต้านอนุมูลอิสระ (Ivanka et al., 2020) แต่ในการปลูกและดูแลรักษาพิทูเนียมักพบปัญหาที่มาจากสภาพแวดล้อมที่ไม่เหมาะสมและการจัดการที่ไม่ถูกต้อง เช่น การระบายน้ำไม่ดีทำให้วัสดุปลูกมีความชื้นสูง หรือเกิดจากเชื้อรา Pythium spp. และ Phytophthora spp. ทำให้รากเน่า (Nelson, 2012) หรือโรคใบไหม้เกิดจากเชื้อรา Botrytis cinerea ทำให้พิทูเนียเกิดจุดสีน้ำตาลและมีเชื้อราสีเทาในใบและดอก มักพบในสภาพอากาศชื้น (Agrios, 2005) นอกจากนี้หากพืชได้รับแสงและอุณหภูมิไม่เหมาะสมจะทำให้การบานของดอกไม่สมบูรณ์ เพราะพิทูเนียต้องการแสงแดดอย่างน้อย 4-6 ชั่วโมงต่อวัน (Dole and Wilkins, 2005) และอุณหภูมิที่ 26 องศาเซลเซียส (Warner, 2010) การป้องกันและการจัดการที่ดีจะช่วยลดปัญหาเหล่านี้และทำให้พิทูเนียเจริญเติบโตได้ดีขึ้น การปลูกไม้ดอกกระถางมี 3 รูปแบบ ขึ้นอยู่กับลักษณะการดูแลและสภาพแวดล้อมที่ต้องการ ดังนี้ 1. การปลูกในระบบดิน (soil-based planting) ใช้ดินผสมกับปุ๋ยและวัสดุปรับปรุงดิน เช่น ทราย หรือขุยมะพร้าว เพื่อให้พืชเติบโตในดินโดยตรง เหมาะสำหรับไม้ดอกกระถางที่ไม่ต้องการการดูแลมากและประหยัดต้นทุนในการผลิต (บ้านและสวน, 2567; ออนไลน์) 2. การปลูกในระบบที่ไม่ใช้ดิน (soilless culture) โดยให้สารละลายธาตุอาหารเป็นแหล่งอาหารหลักสำหรับพืชแทนการใช้ดิน เหมาะสำหรับการปลูกไม้ดอกที่ต้องการการควบคุมปริมาณธาตุอาหารอย่างแม่นยำ ลดปัญหาเรื่องโรคในดิน และการดูแลพืชที่มีประสิทธิภาพสูง (ธรรมศักดิ์, 2544) 3. การปลูกในระบบโรงเรือน (greenhouse cultivation) เพื่อควบคุมสภาพแวดล้อมให้เหมาะสมกับการเจริญเติบโตของไม้ดอก เช่น อุณหภูมิ ความชื้น และแสง เป็นต้น เหมาะสำหรับการผลิตในเชิงพาณิชย์หรือพื้นที่ที่มีสภาพอากาศไม่เหมาะสม ทำให้ไม้ดอกมีคุณภาพและเจริญเติบโตได้ดีกว่ารูปแบบอื่น (เนตาฟิม, 2567; ออนไลน์) อย่างไรก็ตามรูปแบบการปลูกแต่ละระบบจะมีข้อดี-ข้อเสียต่างกัน ขึ้นอยู่กับสภาพพื้นที่และการจัดการของผู้ปลูก การปลูกไม้ดอกกระถางในโรงเรือนสามารถใช้ได้หลายรูปแบบขึ้นอยู่กับสภาพแวดล้อม ความต้องการในการควบคุมสภาพแวดล้อมและประเภทของไม้ดอกที่ปลูก สามารถแบ่งเป็น 4 แบบหลัก ๆ ได้แก่ 1. โรงเรือนมุงพลาสติก (plastic greenhouse) ใช้โครงสร้างเหล็กหรืออลูมิเนียม และมุงด้วยพลาสติกที่มีคุณสมบัติกรองแสง UV ราคาค่อนข้างต่ำและติดตั้งง่าย ควบคุมอุณหภูมิและความชื้นได้ดี แต่พลาสติกมีอายุการใช้งานสั้นและต้องเปลี่ยนใหม่ทุก ๆ 3-5 ปี มีปัญหาเรื่องการสะสมความร้อนในช่วงกลางวัน เหมาะสมสำหรับการปลูกไม้ดอกที่ต้องการการควบคุมสภาพแวดล้อม เช่น เบญจมาศ หรือไม้ดอกกระถางที่ไม่ต้องการแสงแดดแรง (หัตถ์ชัย, 2546; ธาวิดา, 2560; ออนไลน์) 2. โรงเรือนกระจก (glasshouse) ใช้แผ่นกระจกหรือวัสดุโปร่งแสงในการมุงหลังคาและผนัง เพื่อให้พืชได้รับแสงธรรมชาติมากที่สุด สามารถควบคุมแสง อุณหภูมิ และความชื้นได้ดี มีความคงทนสูง อายุการใช้งานยาวนาน แต่ต้นทุนสูง การบำรุงรักษาและทำความสะอาดต้องใช้เวลาและค่าใช้จ่าย เหมาะสมสำหรับการผลิตไม้ดอกที่ต้องการแสงแดดจัดและมีความต้องการในการควบคุมสภาพแวดล้อมที่แม่นยำ เช่น กุหลาบหรือ เบญจมาศ (หัตถชัย, 2546; เนตาฟิม, 2567; ออนไลน์) 3. โรงเรือนมุงแผ่นโพลีคาร์บอเนต (polycarbonate greenhouse) ใช้แผ่นโพลีคาร์บอเนตที่มีคุณสมบัติในการกรองแสงและเก็บรักษาความร้อนภายในโรงเรือน ทนทานต่อสภาพอากาศและช่วยรักษาความร้อนในช่วงกลางคืน กรองแสงได้ดีและลดความเสี่ยงจากแสงแดดจัด แต่ต้นทุนสูงกว่าโรงเรือนพลาสติก ต้องการการบำรุงรักษาอย่างสม่ำเสมอ เหมาะสมสำหรับการปลูกไม้ดอกที่ต้องการการควบคุมอุณหภูมิอย่างแม่นยำ เช่น เบญจมาศกระถางที่ต้องการอุณหภูมิคงที่ (แอมเพิลไลท์, 2567; ออนไลน์) 4. โรงเรือนตาข่ายพรางแสง (shade net house) ใช้ตาข่ายพรางแสงที่มีความทนทานและมีความหนาต่างกัน เพื่อควบคุมปริมาณแสงที่พืชจะได้รับ ราคาถูกและติดตั้งง่าย สามารถเลือกความหนาของตาข่ายพรางแสงตามความต้องการของพืช แต่การควบคุมอุณหภูมิและความชื้นไม่สามารถทำได้เหมือนโรงเรือนประเภทอื่นๆ การควบคุมความชื้นและการป้องกันสภาพอากาศจากภายนอกไม่มีประสิทธิภาพ เหมาะสมสำหรับการปลูกไม้ดอกที่ไม่ต้องการแสงแดดจัด (เนตาฟิม, 2567; ออนไลน์) โรงเรือนระบบปิดและโรงเรือนระบบเปิดมีความแตกต่างกันในเรื่องการควบคุมสภาพแวดล้อมภายในโรงเรือนและการระบายอากาศ ดังนี้ 1. โรงเรือนระบบปิด (closed greenhouse) มีการควบคุมสภาพแวดล้อมภายในอย่างเต็มที่ เช่น การควบคุมอุณหภูมิ ความชื้น และระดับ CO2 โดยใช้ระบบระบายอากาศที่สามารถควบคุมได้ เช่น ระบบการเปิด-ปิดของหน้าต่าง ระบบเครื่องปรับอากาศ และการให้น้ำอัตโนมัติ การควบคุมอุณหภูมิ ความชื้น และธาตุอาหาร ในโรงเรือนได้อย่างแม่นยำ ลดปัญหาเกี่ยวกับการระบาดของโรคและศัตรูพืชจากภายนอก ใช้พื้นที่อย่างมีประสิทธิภาพ แต่ต้นทุนสูงในการติดตั้งและบำรุงรักษา ต้องการการจัดการและดูแลที่ซับซ้อน (ชาคริต, 2565; ออนไลน์) 2. โรงเรือนระบบเปิด (open greenhouse) มีการระบายอากาศจากธรรมชาติหรือใช้พัดลมเพื่อช่วยให้อากาศถ่ายเทและควบคุมอุณหภูมิบางส่วน แต่ไม่ได้ควบคุมสภาพแวดล้อมภายในได้มากเท่ากับระบบปิด ต้นทุนการติดตั้งต่ำ การบำรุงรักษาง่าย ไม่ต้องใช้เทคโนโลยีที่ซับซ้อน การควบคุมอุณหภูมิและความชื้นไม่สามารถทำได้แม่นยำ สภาพอากาศภายนอกมีผลกระทบโดยตรงกับสภาพแวดล้อมภายในโรงเรือน การเลือกใช้ระบบเปิดหรือปิดขึ้นอยู่กับประเภทของพืชที่ปลูกและความสามารถในการลงทุนในเทคโนโลยีการควบคุมสภาพแวดล้อม การปลูกพิทูเนียในโรงเรือนเป็นวิธีที่นิยมใช้กันมาก เนื่องจากสามารถควบคุมสภาพแวดล้อมให้เหมาะสมกับการเจริญเติบโตของพืชได้ แบ่งออกเป็นหลายวิธีตามลักษณะและเทคนิคที่ใช้ เช่น การปลูกแบบไฮโดรโพนิกส์ (hydroponic cultivation) ใช้วัสดุปลูกที่ไม่ใช่ดิน เช่น เพอร์ไลต์ กาบมะพร้าว หรือฟางข้าว โดยให้น้ำที่มีสารละลายธาตุอาหารอยู่ สามารถควบคุมปริมาณธาตุ อาหารได้ดี ลดปัญหาโรคที่เกิดจากดิน แต่ต้องการการดูแลและเทคโนโลยีสูงกว่า (Cardarelli et al., 2010) การปลูกในโรงเรือนระบายความร้อนด้วยการระเหย (evaporative cooling house) เป็นระบบที่ใช้การระเหยของน้ำเพื่อช่วยลดอุณหภูมิภายในโรงเรือน โดยมีหลักการทำงานที่ช่วยให้พืชเจริญเติบโตในสภาพแวดล้อมที่เหมาะสม สามารถลดอุณหภูมิได้อย่างมีประสิทธิภาพโดยไม่ต้องใช้พลังงานไฟฟ้ามาก เหมาะสำหรับพื้นที่ที่มีอากาศร้อนและแห้ง ซึ่งการระเหยสามารถทำให้พืชเจริญเติบโตได้ดี และช่วยลดความชื้นภายในโรงเรือน โดยการระเหยของน้ำจะช่วยทำให้บรรยากาศรอบตัวพืชมีความสะอาดและมีสุขภาพดี (Dole and Wilkins, 2005; Nelson, 2012) การผลิตพิทูเนียในช่วงฤดูฝนไม่เป็นที่นิยมมากนัก เนื่องจากมักพบปัญหาที่มาจากสภาพแวดล้อมที่ไม่เหมาะสม เช่น เวลาฝนตก ถ้าจัดการการระบายน้ำได้ไม่ดีจะส่งผลให้วัสดุปลูกมีความชื้นสูง ทำให้ลำต้น ใบและดอกเน่า (สมเพียร, 2526) รวมถึงปัญหาเรื่องแสงและอุณหภูมิที่ไม่เหมาะสม ส่งผลให้การบานของดอกไม่สมบูรณ์ อีกทั้งยังมีปัญหาความชื้นและเชื้อรา ดังนั้นการทดลองนี้จึงต้องการเปรียบเทียบรูปแบบโรงเรือนที่เหมาะสมสำหรับการผลิตพิทูเนียกระถาง เพื่อสามารถนำมาประกอบการตัดสินใจในการผลิตพิทูเนียเพื่อการค้าต่อไป
คณะวิศวกรรมศาสตร์
This study was conducted to develop a prototype cooling cover for transporting raw milk, aiming to provide a solution for maintaining the quality of raw milk during transportation to milk collection centers. The cooling cover is made using Phase Change Material (PCM), produced from water mixed with a gelling agent, in an amount of 5.6 kg, attached around an aluminum milk tank (with a capacity of 25 L). The cover is then covered with a UV-reflective fabric in two types: polyvinyl chloride (PVC) and high-density polyethylene (HDPE). The temperature reduction performance of both types of covers was evaluated by measuring water temperatures at various points along the radial and vertical directions of the milk tank at six points, using type-T thermocouples, under three environmental conditions: a constant temperature of 25 °C, 35 °C, and outdoor ambient temperature (average temperature 35.5 °C) for a minimum duration of 180 min. The experimental results revealed that at 120 min., the water in the tank covered with PCM-PVC and PCM-HDPE covers had temperatures lower than the ambient temperature by 12.6 °C and 12.9 °C, respectively, under a constant ambient temperature of 25 °C, and under a constant ambient temperature of 35 °C lower by 16.7 °C and 16.4 °C, respectively, and outdoor conditions. Since the temperature reduction performance of PCM-PVC and PCM-HDPE covers showed no significant difference, the performance of microbial quality preservation of raw milk was assessed only with PCM-PVC cover in comparison to a non-covered case (control), by measuring coliform and Escherichia coli counts using compact dry plates. Results indicated that after 120 min., milk in the tank covered with PCM-PVC had an average coliform count of 1.6 × 10^4 CFU/ml and E. coli count of 2 × 10^3 CFU/ml, which was lower than the non-covered control with an average coliform count of 1.5 × 10^4 CFU/ml and E. coli count of 1.1 × 10^4 CFU/ml. This study concludes that the temperature reduction achieved by the cooling cover can help inhibit coliform growth to levels below raw milk quality standards, demonstrating the potential of the cooling cover in maintaining the quality and safety of raw milk during transport, ultimately contributing to an improved quality of life for Thai dairy farmers.
คณะวิทยาศาสตร์
A smartphone-based colorimetric sensor for quantitative detection of pyridoxine (Vitamin B6, VB-6) in functional drink samples has been realized by developing double layer hydrogel. Electrostatic interaction initiates the cross-linking and produces double layer hydrogel.
คณะเทคโนโลยีสารสนเทศ
Currently, the issue of developmental writing disabilities in children is a matter of great importance for school-age children. Diagnosing whether a child has developmental writing disabilities relies on writing skill assessments, which are administered to those seeking diagnosis and evaluated by medical professionals or experts. However, there are still limitations in the diagnostic process, which depends heavily on expert physicians, leading to a high demand for human resources. To address this, we have developed a method for scoring writing skill assessments using image processing technology, based on existing scoring criteria. Currently, three criteria are used for scoring: writing position, article format, and copying speed. We have also created a web application to make the system more accessible and easier to use.