Sugar production from sugarcane is a complex process that requires precise control. One of the major issues is sugar loss, which can result from various factors, particularly "burnt cane," before being sent to the mill. This affects the quality of the sugarcane and the efficiency of sugar extraction, along with the performance of the machinery and the properties of the cane, which impact the amount of sugar extracted. This study aims to analyze the factors that influence sugar loss in the sugar production process, using quantitative data from a sugar factory. Nine variables were examined, including mechanical efficiency, machine downtime per day, cane waiting time per day, sand content in cane juice, pol extraction efficiency, overall working time efficiency, cane juice purity, cane sugar content (C.C.S.), and burnt cane. The data were analyzed using correlation analysis to examine relationships between variables and regression modeling to predict sugar loss. The results showed that mechanical efficiency, cane sugar content, and the amount of sand or impurities in the cane juice were significantly correlated with sugar loss. Mechanical efficiency had a direct relationship with the amount of cane milled, which improved sugar production. On the other hand, burnt cane, or cane that was burnt before harvesting, resulted in reduced sugar extraction and impacted the quality of the sugar. Therefore, reducing sugar loss in the production process can be achieved by improving machine efficiency, reducing impurities in cane juice, and managing burnt cane, which will improve sugar production efficiency in the future.
อุตสาหกรรมน้ำตาลของประเทศไทยเป็นอุตสาหกรรมเกษตรแปรรูปที่มีความสำคัญ โดยมีความโดดเด่นจากการใช้วัตถุดิบภายในประเทศในการผลิตน้ำตาลเพื่อบริโภคภายในประเทศ รวมทั้งสามารถส่งออกส่วนเกินเพื่อสร้างรายได้ให้กับโรงงานผลิตน้ำตาลและเกษตรกรชาวไร่อ้อยซึ่งมีจำนวนมากกว่า 200,000 ครัวเรือน สร้างรายได้มูลค่ากว่า 200,000 ล้านบาทต่อปี ปัจจุบันประเทศไทยมีโรงงานผลิตน้ำตาลจำนวน 51 แห่ง มีอัตรากำลังการผลิตอ้อยสูงถึง 365 ล้านตันต่อปี แต่ในความเป็นจริง โรงงานผลิตน้ำตาลในประเทศไทยมีอ้อยที่ใช้ผลิตเพียง 105 ล้านตันต่อปีเท่านั้น ซึ่งอ้อย 105 ล้านตันจะถูกนำไปหีบในระยะเวลา 4-5 เดือน ตั้งแต่เดือนธันวาคมถึงเดือนเมษายนของทุกปี ซึ่งสามารถผลิตน้ำตาลทรายได้ประมาณ 11-11.5 ล้านตัน โดยผลผลิตนี้จะถูกแบ่งเพื่อบริโภคภายในประเทศประมาณ 2.5 ล้านตัน และส่วนที่เหลือจะถูกส่งออกนำรายได้เข้าประเทศ การผลิตน้ำตาลจากอ้อยเป็นกระบวนการที่มีความซับซ้อนและต้องการการจัดการอย่างมีประสิทธิภาพเพื่อให้ได้ผลผลิตสูงสุด ถ้าพิจารณาปริมาณอ้อยและผลผลิตน้ำตาล จะแสดงให้เห็นถึงประสิทธิภาพการผลิตน้ำตาลของโรงงาน ซึ่งจะขึ้นอยู่กับปัจจัยหลัก 2 ประการคือ 1) อ้อย เป็นวัตถุดิบหลักในการผลิต 2) กระบวนการผลิตที่เกี่ยวข้องกับการสกัดน้ำตาลจากอ้อยผ่านหลายขั้นตอน ตั้งแต่การหีบ การทำให้สิ่งสกปรกจับตัว การระเหยเพื่อลดน้ำในน้ำอ้อย การตกผลึกน้ำตาล การแยกผลึกออกจากกากน้ำตาล และการทำให้ผลึกน้ำตาลแห้ง กระบวนการเหล่านี้ทำงานต่อเนื่อง หากมีการหยุดชะงักในกระบวนการใดกระบวนการหนึ่ง อาจทำให้การสูญเสียน้ำตาลเกิดขึ้น เช่น สูญเสียน้ำตาลในกากอ้อย โมลาส หรือกากตะกรันหม้อกรอง รวมถึงการสูญเสียน้ำตาลที่ไม่สามารถระบุแหล่งได้ อย่างไรก็ตาม หนึ่งในปัจจัยที่มีผลกระทบอย่างมากต่อการสูญเสียน้ำตาลคือ "การเผาอ้อย" ซึ่งเป็นกระบวนการที่เกษตรกรบางส่วนใช้ในการเตรียมอ้อยก่อนการเก็บเกี่ยว การเผาอ้อยทำให้คุณภาพของอ้อยลดลง และทำให้การสกัดน้ำตาลมีประสิทธิภาพต่ำลง ส่งผลต่อผลผลิตน้ำตาลที่ได้ นอกจากนี้ การเผาอ้อยยังทำให้เกิดสิ่งปนเปื้อนในน้ำอ้อย เช่น เถ้าถ่าน หรือควัน ซึ่งมีผลต่อการผลิตน้ำตาลในกระบวนการต่างๆ ต่อไป การศึกษาครั้งนี้จึงวัตถุประสงค์เพื่อวิเคราะห์ปัจจัยที่ส่งผลต่อการสูญเสียน้ำตาลในกระบวนการผลิตน้ำตาลจากอ้อย โดยใช้ข้อมูลเชิงปริมาณจากโรงงานน้ำตาล ครอบคลุม 9 ตัวแปร ได้แก่ ประสิทธิภาพเครื่องจักร (Mechanical efficiency), จำนวนชั่วโมงหยุดเครื่องจักรในหนึ่งวัน (Stoppage), จำนวนชั่วโมงหยุดรออ้อยในหนึ่งวัน (Due to Cane), ปริมาณทรายในน้ำอ้อย (Sand), ประสิทธิภาพการหีบสกัดอ้อย (Pol Extraction), ประสิทธิภาพเวลาการทำงานโดยรวม (Overall Time), ค่าความบริสุทธิ์ของน้ำอ้อย (Purity), ค่าปริมาณน้ำตาลในอ้อย (C.C.S.), และปริมาณอ้อยไฟไหม้ (Burn Cane) โดยจะทำการวิเคราะห์ข้อมูลด้วยค่าสหสัมพันธ์ (Correlation) เพื่อตรวจสอบความสัมพันธ์ระหว่างตัวแปร และแบบจำลองการถดถอย (Regression Model) เพื่อพยากรณ์การสูญเสียน้ำตาล การศึกษาครั้งนี้จึงมีความสำคัญในการพัฒนากระบวนการผลิตอย่างยั่งยืน ช่วยให้โรงงานน้ำตาลสามารถลดการสูญเสียน้ำตาลระหว่างกระบวนการผลิต และเพิ่มประสิทธิภาพในการผลิตน้ำตาล ซึ่งจะนำไปสู่การลดต้นทุนการผลิตและสร้างความสามารถในการแข่งขันในตลาดน้ำตาลได้ในระยะยาว
คณะอุตสาหกรรมอาหาร
The study investigated the extraction of astaxanthin-rich oil from shrimp waste biomass, a valuable byproduct rich in functional lipids and proteins. Wet rendering has long been an inexpensive method to extract oil, however the high temperatures and long cooking times negatively affect the amount of astaxanthin. On the other hand, the study looked into employing deep eutectic solvent as a green solvent and combining a wet rendering process with high-shear homogenization and high-frequency ultrasound-assisted extractions. DES-UAE at 60% amplitude and wet rendering at 60 °C were found to be the ideal conditions, as were DES-HAE at 13,000 rpm and wet rendering at 60 °C. With a notable increase in oil yields of 16.80% and 20.12%, respectively, and improved oil quality (lower acid and peroxide values) in comparison to the conventional wet rendering, experimental validation validated the effectiveness of the DES-HAE and DES-UAE procedures. DES-UAE notably raised the amount of astaxanthin. This study demonstrates that DES-HAE and DES-UAE are quicker, lower-temperature substitutes for obtaining premium, astaxanthin-rich shrimp oil, resulting in more effective use of this priceless byproduct.
คณะวิศวกรรมศาสตร์
This project aims to propose a design for a red offal processing room in a pork processing plant that processes 500 pigs per day or 80 pigs per hour. Each pig weighs approximately 105 kilograms, with 3.47% of the weight consisting of red offal. The process involves separating liver, gall bladder, heart, lungs, spleen, and kidneys as required. These parts are then chilled in cold water to reduce their temperature to below 7°C before packaging and sealing. Sorting is based on the number of pieces and weight, depending on the type of product. The processing times of sorting chilling and packaging vary depending on the product's type and size. The design was developed using data collected from the current production line and referenced standards. The room layout was planned using Systematic Layout Planning (SLP) principles to analyze activity relationships within the room and define functional areas. Equipment sizes and the required number of operators were calculated to ensure optimal use of space. The red offal processing room was designed with an area of 56 square meters. After the layout design was completed, a 3D model was created using SketchUp 2024, and the workflow and operations were simulated and analyzed using Flexsim 2024
คณะเทคโนโลยีการเกษตร
This study aimed to develop a website for collecting and organizing data on Young Smart Farmers in Chanthaburi Province. Data were collected through structured interviews with a sample of 30 participants. The information obtained was categorized and utilized to develop the website, which was subsequently disseminated to farmers and other stakeholders. The study also assessed user satisfaction with the website through a questionnaire, with data analyzed using descriptive statistics, including frequency, percentage, mean, and standard deviation.The results indicated that the sample comprised an equal proportion of male and female participants, with the majority (50.00%) aged between 36 and 40 years. Most respondents were Young Smart Farmers from the districts of Khlung, Laem Sing, and Kaeng Hang Maeo, each representing 13.33% of the sample. The majority of participants had attained a bachelor’s degree or equivalent (60.00%) and were primarily engaged in agricultural occupations (73.33%). The findings on user satisfaction with the website revealed a high level of satisfaction across all dimensions, ranked as follows 1) Website usability (Mean 4.97), 2) Overall satisfaction (Mean 4.93), 3) Content quality (Mean 4.91), 4) Practical benefits and applicability (Mean 4.87), and 5) Design and layout (Mean 4.85).