KMITL Innovation Expo 2026 LogoKMITL 66th Anniversary Logo

Herbal inhaler Homyen

Herbal inhaler Homyen

Abstract

The innovation of aromatic and cooling inhalers stems from the widespread use of inhalers in modern times. This innovation aims to elevate the product to suit contemporary lifestyles, incorporating Thai identity in a way that resonates with the younger generation. The development focuses on enhancing scents using locally sourced Thai ingredients, adding value to Thai flowers and fruits. Various extraction methods are employed to preserve the fragrance for a longer duration. Additionally, borneol, camphor, and menthol are blended to provide a refreshing and cooling sensation. For the packaging, polymer clay is used to create the container, which is hand-molded and then baked to harden. Instead of a traditional cap, a fabric covering is used to introduce a unique and innovative alternative to conventional inhalers.

Objective

เพื่อยกระดับวัตถุดิบท้องถิ่นไทยให้มีกลิ่นที่แปลกใหม่ เพื่อให้เข้าถึงคนรุ่นใหม่ได้มากขึ้นและสร้างกลิ่นอัตลักษณ์ไทยโดยใช้ดอกไม้และผลไม้ไทยในการทำยาดม

Other Innovations

The Designing of 3D-Printed Modular Artificial Reef through Design Thinking Framework: A Case study in Koh Khai, Chumphon Province, Thailand

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

The Designing of 3D-Printed Modular Artificial Reef through Design Thinking Framework: A Case study in Koh Khai, Chumphon Province, Thailand

This study explores the design, production, and installation of 3D-printed modular artificial reefs (3DMARs) at Koh Khai, Chumphon Province, Thailand, through a design thinking framework. Collaborating with SCG Co., Ltd. and the Department of Marine and Coastal Resources, the research establishes design criteria and installation methods, utilizing content analysis and qualitative research. Key principles such as modularity, flexibility, environmental sustainability, and usability are identified. The user-centered approach optimizes the 3DMARs for transport and deployment, enabling local community involvement and fostering sustainable practices. The modular design supports scalability, enhancing marine habitats and coral larval settlement. Furthermore, underwater monitoring techniques enable site-specific data collection, allowing for the generation of digital twin models. This research offers a practical framework for marine ecosystem restoration and empowers coastal communities in Thailand and beyond

Read more
Natural Herbicide Products as a Substitute for Paraquat

คณะเทคโนโลยีการเกษตร

Natural Herbicide Products as a Substitute for Paraquat

The use of chemical herbicides in agriculture has raised concerns due to its adverse effects on farmers' health, environmental sustainability, and consumer safety. Paraquat, a widely used herbicide, has been banned in Thailand. In response to this issue, this research focused on the development of natural herbicide products as an alternative to conventional chemical herbicides. The study involved the extraction of bioactive compounds from selected plants with potential herbicidal properties and evaluating their effectiveness in controlling target weeds. The results indicated that the developed natural herbicide demonstrates significant weed control efficiency. Additionally, this product can be applied to organic farming systems, reducing reliance on hazardous chemicals and promoting sustainable agricultural practices. The development of this natural herbicide served as an essential step toward environmentally friendly and safe agricultural solutions.

Read more
Artifical intelligence for agriculture and enviroment

คณะวิศวกรรมศาสตร์

Artifical intelligence for agriculture and enviroment

Artificial intelligence for agriculture and environment is a collection of significant models for enviromental friendly Thailand development. The models create with machine learning and deep learning by Near infrared spectroscopy research center for agricultural and food products, including: Determining the nutrient needs (N P K) of durian trees by measuring durian leaves using a non-destructive technique using artificial intelligence, Identification of combustion properties of biomass from fast-growing trees and agricultural residues using non-destructive techniques combined with artificial intelligence, and Evaluation of global warming due to biomass combustion using non-destructive techniques using artificial intelligence. The basic technology used is Near infrared Fourier transform spectroscopy technology which measurement and output display can be done quickly without chemical, no requirement for special expert, and measurement price per sample is very low. But the instrument cannot be produced in Thailand.

Read more