การตรวจวินิจฉัยโรคดีซ่าน ซึ่งเป็นภาวะที่พบได้ทั่วไปในทารกเนื่องจากระดับบิลิรูบินในเลือดที่สูงขึ้น มักต้องการการวินิจฉัยและการตรวจสอบอย่างรวดเร็วเพื่อป้องกันภาวะแทรกซ้อนร้ายแรง โดยเฉพาะในทารกแรกเกิด วิธีการวินิจฉัยแบบดั้งเดิมสามารถใช้เวลานานและอาจเกิดข้อผิดพลาดจากมนุษย์ได้ งานวิจัยนี้เสนอแนวทางในการตรวจวินิจฉัยโรคดีซ่านแบบเรียลไทม์โดยใช้เทคนิคการประมวลผลภาพขั้นสูงและอัลกอริทึมแมชชีนเลิร์นนิง โดยการวิเคราะห์ภาพที่ถ่ายในพื้นที่สี RGB จะมีการสกัดและประมวลผลค่าพิกเซลผ่านการปรับค่าเกณฑ์ของ Otsu และการดำเนินการทางสัณฐานวิทยาเพื่อตรวจจับรูปแบบสีที่บ่งบอกถึงโรคดีซ่าน จากนั้นตัวจำแนกจะถูกฝึกฝนเพื่อแยกแยะระหว่างภาวะปกติและภาวะดีซ่าน นำเสนอนวัตกรรมเครื่องมือวินิจฉัยที่แม่นยำและมีประสิทธิภาพ การทำงานแบบเรียลไทม์ทำให้ระบบนี้เหมาะสำหรับสถานพยาบาล โดยให้ข้อมูลเชิงลึกที่ทันเวลาแก่บุคลากรทางการแพทย์เพื่อปรับปรุงผลลัพธ์ของผู้ป่วย วิธีการที่เสนอนี้เป็นนวัตกรรมสำคัญในด้านการดูแลสุขภาพ โดยการรวมปัญญาประดิษฐ์และการถ่ายภาพทางการแพทย์เพื่อเพิ่มประสิทธิภาพในการตรวจวินิจฉัยและจัดการโรคดีซ่านได้เร็วขึ้น ลดการพึ่งพาการแทรกแซงแบบแมนนวล และปรับปรุงการให้บริการด้านสุขภาพโดยรวม
โรคดีซ่าน ซึ่งเป็นภาวะทางการแพทย์ทั่วไปที่มีลักษณะการเหลืองของผิวหนังและดวงตา มักบ่งบอกถึงความผิดปกติของตับหรือเลือดที่อยู่เบื้องหลัง การตรวจพบในระยะเริ่มต้นมีความสำคัญอย่างยิ่ง โดยเฉพาะในทารกแรกเกิด ที่หากไม่ได้รับการรักษาโรคดีซ่าน อาจนำไปสู่ภาวะแทรกซ้อนร้ายแรงได้ วิธีการวินิจฉัยแบบดั้งเดิมต้องอาศัยการตรวจสอบด้วยสายตาหรือการทดสอบในห้องปฏิบัติการ ซึ่งอาจใช้เวลานานและมีข้อผิดพลาดได้ ความก้าวหน้าล่าสุดในด้านการประมวลผลภาพและแมชชีนเลิร์นนิงเสนอความเป็นไปได้ใหม่ ๆ สำหรับการตรวจจับที่แม่นยำ มีประสิทธิภาพ และแบบเรียลไทม์มากขึ้น ด้วยการวิเคราะห์รูปแบบสีผิว ปัญญาประดิษฐ์ (AI) สามารถทำให้การวินิจฉัยเป็นไปโดยอัตโนมัติ ทำให้รวดเร็วขึ้นและลดการพึ่งพาการประเมินโดยมนุษย์
คณะเทคโนโลยีสารสนเทศ
การตรวจจับอารมณ์ผ่านการแสดงออกทางใบหน้า (Facial Expression Recognition, FER) ได้รับความสนใจอย่างมากในหลายสาขา เช่น การดูแลสุขภาพ การให้บริการลูกค้า และการวิเคราะห์พฤติกรรม อย่างไรก็ตาม ความท้าทายยังคงอยู่ที่การพัฒนาระบบที่มีความทนทานและสามารถรับมือกับการเปลี่ยนแปลงของสภาพแวดล้อมรวมถึงสถานการณ์ที่หลากหลายได้ ผู้วิจัยได้นำเสนอการใช้เทคนิค Ensemble Learning เพื่อรวมผลลัพธ์จากโมเดลหลายตัวที่ถูกฝึกในเงื่อนไขเฉพาะ ทำให้ระบบไม่ลืมข้อมูลเก่า และยังสามารถเรียนรู้ข้อมูลใหม่ได้อย่างมีประสิทธิภาพ โดยเทคนิคนี้มีข้อได้เปรียบในด้านเวลาและทรัพยากรที่ใช้ในการเทรน เนื่องจากช่วยลดความจำเป็นในการสร้างโมเดลใหม่ทั้งหมดเมื่อมีสภาพแวดล้อมใหม่ เพียงเพิ่มโมเดลเฉพาะทางใหม่ในระบบ Ensemble ซึ่งใช้ทรัพยากรน้อยกว่าแทน ในงานวิจัยนี้ Ensemble Learning ถูกแบ่งออกเป็นสองแนวทางหลัก คือ การเฉลี่ยผลลัพธ์จากโมเดลเฉพาะทางที่ถูกฝึกภายใต้สถานการณ์เฉพาะ (Averaging Ensemble) และการใช้เทคนิค Mixture of Experts (MoE) ซึ่งเป็นการผสมผสานโมเดลหลายตัวที่เชี่ยวชาญในสถานการณ์ต่าง ๆ ไว้ด้วยกัน ผลการทดลองแสดงให้เห็นว่า การใช้ Mixture of Experts (MoE) มีประสิทธิภาพสูงกว่าวิธี Averaging Ensemble ในการจำแนกอารมณ์ในทุกสถานการณ์ โดยระบบ MoE สามารถเพิ่มความแม่นยำเฉลี่ยได้ถึง 84.41% บนชุดข้อมูล CK+, 54.20% บน Oulu-CASIA และ 61.66% บน RAVDESS ซึ่งสูงกว่าวิธี Averaging Ensemble ที่มีความแม่นยำเฉลี่ยที่ 71.64%, 44.99% และ 57.60% ตามลำดับ ผลลัพธ์เหล่านี้แสดงให้เห็นว่า MoE สามารถเลือกโมเดลที่เชี่ยวชาญในสถานการณ์เฉพาะได้อย่างแม่นยำ และยังช่วยเพิ่มความสามารถในการรับมือกับสภาพแวดล้อมที่ซับซ้อนกว่า
คณะอุตสาหกรรมอาหาร
กากกาแฟเป็นวัสดุเหลือใช้ที่เกิดจากกระบวนการชงกาแฟ ซึ่งมีปริมาณเพิ่มขึ้นอย่างต่อเนื่องตามความนิยมในการบริโภคกาแฟทั่วโลก ภายในกากกาแฟมีสารที่เป็นประโยชน์ เช่น โพลีแซ็กคาไรด์ เส้นใยอาหาร และสารต้านอนุมูลอิสระ ซึ่งสามารถนำมาใช้ประโยชน์ในด้านต่าง ๆ รวมถึงการสกัดพรีไบโอติก งานวิจัยนี้มุ่งเน้นการสกัดสารพรีไบโอติกจากกากกาแฟโดยใช้วิธีการไฮโดรไลซิสด้วยกรดและการย่อยสลายทางเอนไซม์ เพื่อนำสารที่ได้มาประเมินศักยภาพในการส่งเสริมการเจริญเติบโตของจุลินทรีย์ที่มีประโยชน์ต่อระบบทางเดินอาหาร ผลการวิจัยคาดว่าจะช่วยเพิ่มมูลค่าให้กับของเหลือจากอุตสาหกรรมกาแฟ ลดปริมาณขยะอินทรีย์ และเป็นแนวทางในการพัฒนาผลิตภัณฑ์พรีไบโอติกที่สามารถนำไปใช้ในอุตสาหกรรมอาหารและสุขภาพ ทั้งนี้ การศึกษานี้ยังเป็นส่วนหนึ่งของแนวทางการใช้ทรัพยากรอย่างยั่งยืนและเป็นมิตรต่อสิ่งแวดล้อม
คณะวิทยาศาสตร์
ในยุคที่ข้อมูลรีวิวสินค้าบนแพลตฟอร์มอีคอมเมิร์ซมีจำนวนมาก การสรุปความคิดเห็นให้เข้าใจง่ายและใช้งานได้จริงจึงเป็นสิ่งสำคัญ งานวิจัยนี้นำเสนอระบบวิเคราะห์รีวิวสินค้าด้วย Aspect-Based Sentiment Analysis (ABSA) ซึ่งเป็นเทคนิคใน Natural Language Processing (NLP) ที่สามารถแยกแยะแง่มุมสำคัญของรีวิว (เช่น การจัดส่ง คุณภาพสินค้า บรรจุภัณฑ์) และวิเคราะห์อารมณ์ (บวก ลบ หรือเป็นกลาง) ของแต่ละแง่มุม ระบบนี้ช่วยให้ผู้บริโภคและร้านค้าสามารถเข้าถึงข้อมูลเชิงลึกได้อย่างมีประสิทธิภาพ โครงการนี้ได้พัฒนา AI สำหรับการวิเคราะห์ ABSA ภาษาไทย โดยใช้ WangchanBERTa ซึ่งฝึกบนข้อมูลภาษาไทย และเปรียบเทียบกับโมเดลต่างๆ เช่น TF-IDF + Logistic Regression, Word2Vec + BiLSTM, และ Multilingual BERT (mBERT/XLM-R) เพื่อประเมินประสิทธิภาพในด้านความแม่นยำ ความเร็ว และการใช้ทรัพยากร นอกจากนี้ยังมีการแสดงผลผ่าน Dashboard Visualization เพื่อให้ผู้ใช้เข้าใจแนวโน้มของรีวิวได้อย่างรวดเร็ว ผลลัพธ์ที่คาดหวังคือการพัฒนาเครื่องมือ AI ที่ใช้งานจริงในอุตสาหกรรมอีคอมเมิร์ซ ช่วยให้ผู้บริโภคตัดสินใจซื้อสินค้าได้ง่ายขึ้น และช่วยร้านค้าในการปรับปรุงผลิตภัณฑ์และบริการได้อย่างมีประสิทธิภาพ