KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Ancient gold, Praow Daendin dessert

Ancient gold, Praow Daendin dessert

Abstract

Traditional Thong Yip dessert, or locally known as Khee Man dessert, is a dessert made from flour made from yellow rice.

Objective

เป็นการเรียนในหลักสูตรและรายวิชาเกี่ยวกับเศรษฐศาสตร์ธุรกิจ ได้เรียนรู้การทำธุรกิจ

Other Innovations

A Metaverse System of Chalermphrakiat Innovation Building at King Mongkut's Memorial Park, KMITL

คณะเทคโนโลยีสารสนเทศ

A Metaverse System of Chalermphrakiat Innovation Building at King Mongkut's Memorial Park, KMITL

Traditional methods of public relations and learning often lack engagement and fail to provide users with a deep and immersive experience. Additionally, these methods struggle to reach a wide audience, especially those unable to visit the physical location. This project aims to solve the issues of accessibility and awareness regarding the institution’s Chalermphrakiat Hall and historical exhibition. Utilizing metaverse technology to simulate important locations allows users to explore the site and view key information in a virtual format, thereby enhancing the engagement of students staff alumni and the general public. The metaverse system is developed using Unity, a powerful game engine capable of supporting the creation of metaverse environments. This allows for the creation of an interactive and realistic virtual space. Unity also supports the management of physics, lighting, and sound, further enhancing realism. Additionally, the system is integrated with web browsers using WebGL technology, enabling the project developed in Unity to be accessed directly through a browser. Users can visit and interact with the metaverse environment from anywhere without the need to install additional software. The developers have thus created the metaverse system to provide a realistic and engaging learning experience, enhancing public relations efforts and fostering a strong connection with the institution efficiently.

Read more
Productivity Improvement in Warehouse Using Power BI and Power Automate

คณะวิศวกรรมศาสตร์

Productivity Improvement in Warehouse Using Power BI and Power Automate

This cooperative education project aims to enhance speed and facilitate the verification process for stock issuance, transfers, distributions, and receipts in the warehouse. The primary focus is to address issues related to wasted time and delays in operational processes. Through analysis, it was found that SAP, the current system, involves complex processes requiring specialized expertise. Although the company has developed the iWarehouse system to improve efficiency, delays and procedural complexity persist. To resolve these challenges, Power BI was utilized to visualize data related to stock issuance, transfers, distributions, and receipts, allowing warehouse staff to work more efficiently by minimizing waste and accelerating processes. Additionally, Power Automate was integrated to automate the processing of received stock numbers from emails, reducing errors and delays caused by manual data entry. The results of this improvement indicate a significant increase in employee efficiency and a noticeable reduction in wasted time. Upon project completion, the findings and development approach will be provided to the company for further enhancement.

Read more
In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

คณะวิทยาศาสตร์

In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

Cancer remains a major global health challenge as the second-leading cause of human death worldwide. The traditional treatments for cancer beyond surgical resection include radiation and chemotherapy; however, these therapies can cause serious adverse side effects due to their high killing potency but low tumor selectivity. The FDA approved monoclonal antibodies (mAbs) that target TIGIT/PVR (T-cell immunoglobulin and ITIM domain/poliovirus receptor) which is an emerging immune checkpoint molecules has been developed; however, the clinical translation of immune checkpoint inhibitors based on antibodies is hampered due to immunogenicity, immunological-related side effects, and high costs, even though these mAbs show promising therapeutic efficacy in clinical trials. To overcome these bottlenecks, small-molecule inhibitors may offer advantages such as better oral bioavailability and tumor penetration compared to mAbs due to their smaller size. Here, we performed structure-based virtual screening of FDA-approved drug repertoires. The 100 screened candidates were further narrowed down to 10 compounds using molecular docking, with binding affinities ranging from -9.152 to -7.643 kcal/mol. These compounds were subsequently evaluated for their pharmacokinetic properties using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis, which demonstrated favorable drug-like characteristics. The lead compounds will be further analyzed for conformational changes and binding stability against TIGIT through molecular dynamics (MD) simulations to ensure that no significant conformational changes occur in the protein structure. Collectively, this study represents the potential of computational methods and drug repurposing as effective strategies for drug discovery, facilitating the accelerated development of novel cancer treatments.

Read more