KMITL Innovation Expo 2025 Logo

CO Breathalyzer with Voice Response

CO Breathalyzer with Voice Response

Abstract

CO Breathalyzer with Voice Response is the device to measured the level of CO residual in a person's lung who consume tobacco. Measuring residual CO in human breath can identify the tobacco addiction level instead of measuring nicotine in blood.

Objective

เพื่อทดแทนการนำเข้าจากต่างประเทศ

Other Innovations

EcoGrow Pellets: Recycled Clay Pellets Enriched with Natural Calcium

คณะวิทยาศาสตร์

EcoGrow Pellets: Recycled Clay Pellets Enriched with Natural Calcium

Eco Grow Pellets are high-porosity plant-growing clay pellets made from ceramic industrial sediment, blended with ground chicken bone to enhance calcium and essential minerals, promoting strong and healthy plant growth. They are suitable for all types of plants, especially those requiring well-aerated soil with good water drainage. Eco Grow Pellets are an innovative clay-based growing medium designed to optimize plant cultivation efficiency. Their high porosity structure allows for excellent air and water circulation, reducing soil compaction and waterlogging—common causes of root rot and stunted growth. Additionally, the pellets are enriched with calcium and essential minerals from ground chicken bones, reinforcing plant structure and enhancing root strength, enabling better nutrient absorption. This product is made from 100% recycled ceramic industrial sediment, aligning with the principles of Zero Waste and the BCG Economy Model. It helps minimize industrial waste while transforming discarded materials into high-value, eco-friendly growing media. Eco Grow Pellets are ideal for vegetables, flowers, and potted plants, offering ease of use, cleanliness, and safety. They contribute to sustainable agriculture by improving both crop productivity and environmental health.

Read more
Power of Leaves: A Natural Fluorescent Seed Coating Innovation for Anti-Counterfeiting

คณะเทคโนโลยีการเกษตร

Power of Leaves: A Natural Fluorescent Seed Coating Innovation for Anti-Counterfeiting

This experiment aimed to study the suitable types of polymers for coating with chlorophyll extract and the quality of cucumber seeds after coating. The experiment was planned using a Completely Randomized Design (CRD) with four replications, consisting of five methods involving seeds coated with different types of polymers: Polyvinylpyrrolidone, Sodium Alginate, Carboxy Methyl Cellulose, and Hydroxypropyl Methylcellulose, each polymer being coated alongside chlorophyll, with uncoated seeds serving as the control method. The coating substance was prepared by extracting chlorophyll from mango leaves, then mixed with each type of polymer at a concentration of 1%, using an 8% concentration of chlorophyll extract. The properties of each coating method, such as pH and viscosity of the coating substance, were examined before coating the cucumber seeds with a rotary disk coater model RRC150 at a coating rate of 1,100 milliliters per 1 kilogram of seeds. Subsequently, the seeds were dried to reach the initial moisture level using a hot air blower, and seed quality was assessed in various aspects, including seed moisture, germination rate under laboratory conditions, germination index, and seed fluorescence under a portable ultraviolet light illuminator, as well as light emission spectrum analysis using a Spectrophotometer. The experiment found that each type of polymer could be used to form a film together with chlorophyll, which had appropriate pH and viscosity for the coating without affecting seed quality and showed fluorescence on the seed surface both under portable ultraviolet light and spectral emission analysis with a Spectrophotometer. Using HPMC as the film-forming agent with chlorophyll was the most suitable method, enhancing seed fluorescence efficiency.

Read more
Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more