KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Self Doubt

Abstract

A Photographic series that expresses the abstract states of myself, towards the question of existence that results from being surrounded by expectations of both surrender and freedom of expression, this series focuses on my own subjectivities in order to bring back memories of almost forgotten feelings and make them clear once more.

Objective

การที่เติบโตมาจากครอบครัวที่คาดหวังในตัวเรา ที่สมาชิกคาดหวังในตัวเราไม่เหมือนกัน ถ้าเราทำแบบใดแบบหนึ่งที่คนใดคนหนึ่งต้องการอีกคนจะไม่พอใจ จนเราเกิดสงสัยว่าเราต้องเป็นแบบไหน เมื่อเข้ามาอยู่ในสังคมใหม่ทำให้เราตั้งคำถามกับตนเองเมื่อเข้าหาผู้คนว่าเราต้องเป็นไปแบบที่เขาต้องการหรือเปล่าเราถึงจะเข้าถึงเขาได้ ทำให้เราสับสนกับตัวเองและต้องสร้างตัวตนใหม่ไปตามที่คนคนนั้นพอใจ จนเราเองเริ่มเกิดคำถามว่าจริงๆแล้วตัวตนของเราจริงๆเป็นแบบไหน

Other Innovations

Photoelectrochemical sensor for salbutamol detection using molecular imprinted-polymer technique with CuO/g-C₃N₄ nanocomposite

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ

Photoelectrochemical sensor for salbutamol detection using molecular imprinted-polymer technique with CuO/g-C₃N₄ nanocomposite

The photoelectrochemical detection of salbutamol, which is illicitly used as a lean meat promoter in pigs, is investigated using a molecularly imprinted polymer (MIP)-based sensor with a CuO/g-C₃N₄ nanocomposite to enhance detection performance, leveraging nanomaterials and molecular imprinting for high selectivity and sensitivity. This approach offers a promising strategy for the precise and efficient analysis of salbutamol in food samples.

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more
Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

คณะวิทยาศาสตร์

Bacteriocinogenomic analysis and anti-pathogenic activity of potential Lactococcus lactis TKP1-5 isolated from the feces of Anas platyrhynchos

Bacteriocins are microbial peptides that demonstrate potency against pathogens. This study evaluated the inhibitory effects on pathogens and characterized the bacteriogenomic profile of strain TKP1-5, isolated from the feces of Anas platyrhynchos domesticus. Strain TKP1-5 was characterized using phenotypic traits, 16S rRNA sequencing, and Whole-Genome Sequencing (WGS). It exhibited growth in the presence of 2-6% NaCl, temperatures of 25-45°C, and pH levels ranging from 3 to 9. Based on ANIb, ANIm, and dDDH values, strain TKP1-5 was identified as Lactococcus lactis. Whole genome analysis revealed that strain TKP1-5 harbors the Nisin Z peptide gene cluster with a bit-score of 114.775. The antimicrobial spectrum of bacteriocin TKP1-5 showed inhibitory effects against pathogenic bacteria including Pediococcus pentosaceus JCM5885, Listeria monocytogenes ATCC 19115, Enterococcus faecalis JCM 5803T, Salmonella Typhimurium ATCC 13311ᵀ, Aeromonas hydrophila B1 AhB1, Streptococcus agalactiae 1611 and Streptococcus cowan I. Genomic analysis confirmed L. lactis TKP1-5 as a non-human pathogen without antibiotic resistance genes or plasmids. Furthermore, L. lactis TKP1-5 contains potential genes associated with various probiotic properties and health benefits. This suggests that L. lactis TKP1-5, with its antibacterial activity and probiotic potential, could be a promising candidate for further research and application in the food industry.

Read more