KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Self Doubt

Abstract

A Photographic series that expresses the abstract states of myself, towards the question of existence that results from being surrounded by expectations of both surrender and freedom of expression, this series focuses on my own subjectivities in order to bring back memories of almost forgotten feelings and make them clear once more.

Objective

การที่เติบโตมาจากครอบครัวที่คาดหวังในตัวเรา ที่สมาชิกคาดหวังในตัวเราไม่เหมือนกัน ถ้าเราทำแบบใดแบบหนึ่งที่คนใดคนหนึ่งต้องการอีกคนจะไม่พอใจ จนเราเกิดสงสัยว่าเราต้องเป็นแบบไหน เมื่อเข้ามาอยู่ในสังคมใหม่ทำให้เราตั้งคำถามกับตนเองเมื่อเข้าหาผู้คนว่าเราต้องเป็นไปแบบที่เขาต้องการหรือเปล่าเราถึงจะเข้าถึงเขาได้ ทำให้เราสับสนกับตัวเองและต้องสร้างตัวตนใหม่ไปตามที่คนคนนั้นพอใจ จนเราเองเริ่มเกิดคำถามว่าจริงๆแล้วตัวตนของเราจริงๆเป็นแบบไหน

Other Innovations

Design Public Park Project : Ancient Sea Park

คณะเทคโนโลยีการเกษตร

Design Public Park Project : Ancient Sea Park

The Public park project : Ancient Sea Park. This's a new park in Aangsila Chonburi make for learn and travel in concept The sea in 65 million years ago.

Read more
CO Breathalyzer with Voice Response

คณะบริหารธุรกิจ

CO Breathalyzer with Voice Response

CO Breathalyzer with Voice Response is the device to measured the level of CO residual in a person's lung who consume tobacco. Measuring residual CO in human breath can identify the tobacco addiction level instead of measuring nicotine in blood.

Read more
Investigation variable star classification through light curve analysis using machine learning approach

คณะวิทยาศาสตร์

Investigation variable star classification through light curve analysis using machine learning approach

With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.

Read more