Nowadays, automobiles are the most widely used form of transportation. This increases the risk of accidents. Therefore, car users prefer to get insurance to reduce the risk in the event of an accident. As for the insurance company, the company will be responsible for damages according to the conditions of the policy. One of the duties of a company's claims department is to procure spare parts to control costs. However, in the case of compensation, there may be erroneous operations, such as ordering the wrong parts or ordering more than necessary. Currently, insurance companies do not have a very efficient management system. This research aims to develop a system for managing and storing automobile parts for insurance companies. The system is designed to be able to track the status of spare parts from storage to disbursement. It uses barcode technology to increase accuracy and reduce errors in data recording. Such a system will help insurance companies manage spare parts systematically, reduce unnecessary costs, and increase efficiency in providing services.
การประกันภัยเป็นที่นิยมมากในปัจจุบัน บริษัทประกันจึงจำเป็นที่จะต้องปรับตัวรับมือกับกรมธรรม์ที่มากขึ้นในทุกๆปี ทำให้จะต้องมีระบบในการรองรับและจัดการต่างๆ ซึ่งในหน่วยงานของสินไหมรถยนต์เอง ก็ต้องมีระบบและการจัดการที่มีประสิทธิภาพเช่นกัน และหนึ่งในนั้นคืองานระบบภายในและระบบภายนอกที่เกิดจากความต้องการของสาขาต่างๆของบริษัท และคู่ค้าสัญญาในเครือ ซึ่งทำให้เกิดระบบขึ้นมา ได้แก่ ระบบจัดการและจัดเก็บอะไหล่
วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Ultrasonic cleaning tank is a machine that many factories widely used to clean objects. At one factory, a problem occurred in the cleaning process, resulting in the factory not being able to clean objects, but cracks also appeared on some objects. It was anticipated that these were caused by uneven acoustics pressure distribution which resulted in unsuitable cavitation This directly affected cleaning performance within the tank. In order to improve the tank's efficacy, in this research, we use Harmonic Response Analysis in ANSYS simulate simulate the occurrence of acoustic pressure in the tank to find the appropriate conditions of factors affected the intensity and the distribution pattern of acoustic pressure in ultrasonic tank, including the position of object, power, ultrasonic frequency and a suitable type and placing position of the transducer for the tank. Reliability of the simulate results was validate by the actual result from the foil corrosion test and the ultrasonic power probe. We found that objects receive different pattern of corrosion at each location. When temperature increasing the intensity of cavitation was increased. When we increase the ultrasonic frequency, acoustic pressure that is evenly dispersed throughout the tank.
คณะเทคโนโลยีการเกษตร
This research aims to evaluate the efficiency of nano-type oxygen diffusers at different pump power levels in sea bass nursery ponds. The study examines how varying power levels affect dissolved oxygen distribution in the water and their impact on the health, growth, and survival rates of sea bass. The findings indicate that pump power levels influence dissolved oxygen concentration, with the optimal power level improving oxygen distribution in the pond. This enhancement leads to higher survival and growth rates for sea bass. The results provide valuable insights for selecting appropriate oxygen diffusers and pump power levels in fish nursery pond systems. The experiment consisted of two conditions: 1. Without fish – This condition assessed the oxygenation capacity, oxygen transfer coefficient, oxygen transfer rate, and oxygen transfer efficiency of pumps at three different power levels. 2. With fish – This condition evaluated whether the oxygen supplied by pumps at three power levels was sufficient, based on the growth rate and survival rate of the fish in the pond. Blood counts were conducted to assess the immune response. The collected data were statistically analyzed using the RCBD method for the condition without fish and the CRD method for the condition with fish, employing SPSS software.
วิทยาลัยวิศวกรรมสังคีต
This project explores the therapeutic potential of binaural beats within a 3D soundscape environment, focusing on the effects of left-right (L-R) beating sound positioning. Using Dolby Atmos technology to create immersive auditory experiences, the research aims to investigate how varying spatial beating sound placements in binaural beat therapy influence mental and emotional healing. Binaural beats, a form of auditory brainwave entrainment, have been shown to promote relaxation, reduce anxiety, and enhance cognitive performance. However, there has been limited exploration of how spatial sound technologies, like Dolby Atmos, can enhance the efficacy of these therapies. This study examines how different beating L-R configurations in a 3D soundscape impact the listener’s perception and therapeutic outcomes. Participants will experience binaural beat sessions in various beating L-R orientations, and physiological and psychological measures, such as heart rate variability and self-reported relaxation levels, will be assessed. The results are expected to provide new insights into the interaction between spatial audio environments and sound-based therapies, potentially improving sound therapy practices by leveraging advanced audio technologies.