Most rice is consumed as cooked, milled rice, but a small portion is also ground into flour or separated into a starch fraction and used by the food industry as a gluten-free ingredient. This study aims to find out if different types of rice flour and starch, such as white and colored rice, could be used in industry. This study employs green modification techniques to slow down the digestion process by combining polyphenols with starch. Our initial study found that the raw colored rice has a lower glycemic index than other types of rice, such as brown or white rice. Another study that looked at how the quality of colored rice flour was changed by different methods also discovered that out of the six green methods (annealing, heat moisture treatment, ultrasound, pregelatinization, wet-microwave, and dry-microwave). It found that ultrasound improved the polyphenol bioaccessibility in the rice flour and reduced the digestion rate. The pregelatinization process led to the flour having high solubility and an estimated glycemic index. Different techniques affected the flour/starch quality in different ways. Therefore, for further industrial application, it could also be easier to select the method for food product based on their required techno-functional quality of flour/starch. In addition to the modification techniques, this study showed that the high bioaccessible polyphenol content and high polyphenol content in rice greatly slowed down the rate of digestion. This study also open for further exploring the possibility of using high polyphenol agricultural waste to modify starch and flour in a sustainable manner.
Rice (Oryza sativa L.) is a crucial staple crop that supplies nutritional sustenance for half of the global population (Shao et al., 2018). Moreover, rice constitutes a significant commercial crop in Thailand, with its grains serving as a staple food, and a diverse array of rice types is present throughout the nation (Suebpongsang et al., 2020). Multiple rice types have been developed in Thailand, including colored/pigmented rice and non-pigmented rice, commonly referred to as brown and white rice, which can be utilized in many industries (Yamuangmorn & Prom, 2021). Furthermore, rice is regarded as a naturally gluten-free ingredient. Rice flour or starch can be utilized to create a variety of products, including cookies, bread, noodles, and crackers. Due to the elevated carbohydrate content in rice, most rice products are regarded as having a high glycemic index (GI). The link between polyphenols and digestive behavior has become a topic of attention, particularly for rice and its products. Researchers predominantly conducted comparisons of the features of pigmented rice and non-pigmented rice (with/without eGI) across various areas or types (Tangsrianugul et al., 2019; Verma & Srivastav, 2020; Waewkum & Singthong, 2021). Nevertheless, there remains a deficiency in information regarding the association between endogenous antioxidant qualities and other starch characteristics, which might be further considered for predicting the nutritional value of rice and for enhancing the foundational knowledge necessary for the development of rice products. The versatility of rice flour in industrial applications is primarily influenced by its physicochemical properties and usefulness. Unprocessed rice has limited utility and applicability (Iqbal et al., 2023). Consequently, novel techniques are necessary to enhance the quality of rice flours for further processing. Therefore, this research may offer essential insights for further investigation into select rice varieties and modification techniques for specific industrial applications by utilizing the starch-polyphenols complex concept.

คณะวิทยาศาสตร์
This project presents the development of a "Smart Cat House" using Internet of Things (IoT) and image processing technology to facilitate and enhance the safety of cat care for owners. The infrastructure of the smart cat house consists of an ESP8266 board connected to an ESP32 CAM camera for cat monitoring, and an Arduino board that controls various sensors such as a motion sensor in the litter box, a DHT22 temperature and humidity sensor, an ultrasonic water and food level sensor, including a water supply system for cats, an automatic feeding system, and a ventilation system controlled by a DC FAN that adjusts its operation according to the measured temperature to maintain a suitable environment. There is also an IR sensor to detect the cat's entry into the litter box and an automatic sand changing system with a SERVO MOTOR. All systems are connected and controlled through the Blynk application, which can be used on mobile phones, allowing owners to monitor and care for their pets remotely. Cat detection and identification uses image processing technology from the ESP32 CAM camera in conjunction with YOLO (You Only Look Once), a high-performance object detection algorithm, to detect and distinguish between cats and people. Data from various sensors are sent to the Arduino board to control the operation of various devices in the smart cat house, such as turning lights on and off, automatically changing sand, adjusting temperature and humidity, feeding food and water at scheduled times, or ventilation. The use of a connection system via ESP8266 and the Blynk application makes it easy and convenient to control various devices. Owners can monitor and control the operation of the entire system from anywhere with internet access.

คณะอุตสาหกรรมอาหาร
The activities of the project's operations consist of: checking microbe on sample food, hygienic condition of cooker, containers and materials, sanitation knowledge and private sanitation and food quality of canteen and cleaning of cooker. The Food Safety Management program collaborated with the Property Management office, planned the operations, and assessed food vendors based on the SAN 20 food safety standards requirements. Using A.13 testing kits, we conducted testing for coliform bacteria contamination in food, containers, equipment, and hand contact surfaces, collecting 6 samples. These included samples such as prepared food, areas in front of the store, and food handlers' hands. Additionally, we used A.11 testing kits to test for coliform bacteria contamination in water and ice. The analysis of results, including physical, microbiological, and chemical aspects, serve as a guideline for improving the quality and safety of food production and service in the institution's canteen.

คณะวิศวกรรมศาสตร์
-