KMITL Innovation Expo 2026 LogoKMITL 66th Anniversary Logo

Attributes prediction of biocomposite scaffold made from 3D printing using a finite element analysis

Abstract

Bone tissue scaffolds are made from biomaterials that support rapid repair and healing. Scaffold fabricators have produced materials that are able to degrade a biosystem or human body excellently. Thus, this work aims to study the optimization of materials, shape, and the 3D printing process with FDM. Finite element analysis is also used to predict mechanical properties of the scaffold and find the optimal shape and pore size. However, the materials studied include PLA, PCL, and HA.

Objective

โครงเลี้ยงเซลล์ (Scaffold) หรือวัสดุที่มีรูพรุนเพื่อการเจริญเติบโตของเซลล์สู่การกลายเป็นเนื้อเยื่อสำหรับการฟื้นฟูส่วนที่เสียหายของร่างกาย ซึ่งในปัจจุบันมีความเสียหายของเนื้อเยื่อที่เกิดขึ้นจากอุบัติเหตุ โรค เป็นต้น โดยการรักษาแบบดั้งเดิมจะใช้การรับเนื้อเยื่อจากผู้บริจาค แต่ก็อาจไม่เข้ากันกับร่างกายของผู้ป่วยทางวิศวกรรมเนื้อเยื่อจึงได้มีการพัฒนาโครงเลี้ยงเซลล์ขึ้นมาซึ่งจำเป็นต้องมีคุณสมบัติที่สำคัญ ได้แก่ การทนต่อการรับแรง การย่อยสลายภายในร่างกาย และความเข้ากันได้ทางระบบชีวภาพ อย่างไรก็ตามมีความท้าทายมากมายในการพัฒนาวัสดุชีวภาพในโครงเลี้ยงเซลล์ เช่น การรองรับความหนาแน่นของเซลล์ที่เพิ่มขึ้นเนื่องจากการเจริญเติบโต ซึ่งจำเป็นต้องออกแบบรูพรุนภายในโครงเลี้ยงเซลล์ การรับแรงการแรงกดโดยมวลกล้มเนื้อของร่างกาย และเลือกวัสดุที่เหมาะสมเพื่อรองรับการเจริญเติบโตของเซลล์ เป็นต้น

Other Innovations

COMMUNICATION ASSISTANCE SYSTEM FOR PARALYZED IMMOBILE PATIENTS BY EYE TRACKING

วิทยาเขตชุมพรเขตรอุดมศักดิ์

COMMUNICATION ASSISTANCE SYSTEM FOR PARALYZED IMMOBILE PATIENTS BY EYE TRACKING

This project aims to design and develop an eye-tracking system to facilitate communication for paralyzed immobile patients. The system is designed to enable patients to convey their needs to caregivers or family members by detecting and tracking eye movements using the Tobii Eye Tracker 5 device. This approach serves as an alternative communication method, replacing the physical movement or speech of paralyzed patients. The system effectively detects and tracks eye movements at a distance of 55 to 85 centimeters and is designed for installation on a computer to ensure ease of use. The program interface consists of three main sections: (1) a set of emotions, (2) a set of needs, and (3) a set of additional needs. It supports input from a virtual keyboard in both Thai and English and allows users to specify additional needs through eye-tracking-enabled typing. Furthermore, the system can generate synthetic speech for text that is difficult to pronounce aloud, send notification messages via the Line application, and store usage data in a database presented in a dashboard format. System testing revealed that the optimal detection distance ranges from 65 to 75 centimeters, as this range yields an error rate of no more than 1 percent. The system accurately responds to eye movements for communication through sound within 3 seconds when interacting with various function buttons. This eye-tracking system effectively enables paralyzed immobile patients to communicate their emotions and needs, facilitating better understanding and interaction between patients and their caregivers or family members.

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more
Website design to help graduates manage food expenses and compliance with proper nutritional principles

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Website design to help graduates manage food expenses and compliance with proper nutritional principles

With the current cost of living situation in Thailand continuously rising, many recent graduates face challenges in managing their expenses in alignment with the increasing living costs. Food expenses, even for common street food, continue to surge with no sign of decreasing, despite improvements in raw material costs. Pay-Attention is a website platform designed to help recent graduates gain insights into managing and optimizing their food expenses effectively. It provides guidance on how to spend wisely, ensuring cost-effectiveness while maintaining adequate daily nutritional intake, without falling into monotonous eating habits.

Read more