KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

Abstract

This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.

Objective

The increasing complexity of pharmaceutical treatments requires precise pill identification to ensure patient safety. Traditional methods for pill reconciliation rely on human experts, which are time-consuming and prone to errors. Deep Convolutional Neural Networks (CNNs), particularly effective in image processing, offer a promising solution for automating and enhancing these processes.

Other Innovations

Isolation and selection of antagonistic microorganisms against plant pathogens

คณะเทคโนโลยีการเกษตร

Isolation and selection of antagonistic microorganisms against plant pathogens

-

Read more
Garbage sorting Systems

คณะวิศวกรรมศาสตร์

Garbage sorting Systems

The presented project topic is Garbage Sorting Systems. The purpose is to study the operation and develop a waste sorting system that can automatically detect the type of waste using a proximity sensor to separate the types of metal and non-metal waste, as well as an ultrasonic sensor to check the amount of waste in the bin. If the amount of waste exceeds the specified amount, the system will send a notification to the communication device connected to the system, such as a smartphone or computer. The operation of the system is designed to increase the efficiency of waste management, reduce the burden of manual waste sorting, and promote recycling. This system can be applied in various places, such as educational institutions or public places, to help reduce the amount of waste that is not properly separated and increase the opportunity to reuse waste.

Read more
The use of Houttuynia cordata Thunb and Piper retrofractum Vahl extracts to inhibit opportunistic infections in patient with atopic dermatitis

คณะวิทยาศาสตร์

The use of Houttuynia cordata Thunb and Piper retrofractum Vahl extracts to inhibit opportunistic infections in patient with atopic dermatitis

Atopic dermatitis patients are the second largest number among skin disease patients. There is no cure for atopic dermatitis, and it can only be treated to relieve symptoms, causing chronic disease. There is a chance that opportunistic infections will enter and cause more disease from the patient's wound, causing the patient to have complications from other infections. This study is interested in studying the reduction of the chance of opportunistic infections in patients with atopic dermatitis using natural extracts. The interest is in Plu Kaow and long pepper because there is data supporting the inhibition of microorganisms. The leaves of both plants are crudely extracted, soaked in 95% ethanol for 7 days, filtered with a Buchner filter, and the extracts are tested for phytochemicals to analyze phenolic components, flavonoids, tannins, anthocyanin, DPPH, and tested for antimicrobial properties. The experiments consisted of 5 types of gram-positive and gram-negative bacteria: E. coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The researcher expects that this can be further developed and used to treat patients with atopic dermatitis.

Read more