Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.
ปัจจุบันการตรวจจับอารมณ์ของมนุษย์ผ่านการแสดงออกทางใบหน้า (Emotion Detection Using Facial Expression) ได้รับความสนใจมากขึ้น เนื่องจากมีการประยุกต์ใช้อย่างแพร่หลายในหลายด้าน เช่น สุขภาพจิตการศึกษา และการบริการลูกค้า อย่างไรก็ตาม การพัฒนาระบบที่มีความแม่นยำและสามารถทนทานต่อการเปลี่ยนแปลงของสภาพแวดล้อม เช่น การบดบังบางส่วนของใบหน้า หรือสภาพแสงที่ไม่สม่ำเสมอ ยังคงเป็นความท้าทายหลัก โดยเฉพาะการพัฒนาโมเดลที่สามารถทำงานได้ในสภาพแวดล้อมที่หลากหลาย จากการศึกษางานวิจัยเกี่ยวกับ Facial Expression Recognition (FER) ผู้วิจัยพบว่าเทคนิค Frame Attention Network (FAN) ซึ่งเป็นการประยุกต์ใช้กลไก Attention จากงานด้านการประมวลผลภาษาสามารถนำมาใช้เพื่อให้ความสำคัญกับเฟรมที่มีความหมายในวิดีโอ ทำให้ระบบสามารถโฟกัสเฉพาะเฟรมที่แสดงอารมณ์ที่สำคัญได้ ซึ่งส่งผลต่อประสิทธิภาพของโมเดล ทีมวิจัยจึงนำเทคนิคนี้มาปรับปรุงเพื่อเพิ่มความทนทานของระบบในการจัดการสถานการณ์ดังกล่าว เพื่อพัฒนาประสิทธิภาพของระบบให้ดียิ่งขึ้น ทีมวิจัยได้ใช้แนวทาง Ensemble Learning ซึ่งเป็นการรวมผลลัพธ์จากหลายโมเดลที่ถูกฝึกในเงื่อนไขเฉพาะ การใช้ Ensemble ช่วยลดข้อผิดพลาดจากการใช้โมเดลเดียว และเพิ่มความแม่นยำและความน่าเชื่อถือของผลลัพธ์ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่หลากหลาย อย่างไรก็ตาม ทีมวิจัยยังได้ขยายการพัฒนาเพิ่มเติมโดยใช้เทคนิค Multi-Task Learning (MTL) เพื่อให้ระบบสามารถเรียนรู้จากหลายงานพร้อมกัน ซึ่งในงานวิจัยนี้ได้นำ MTL มาใช้ใน Mixture of Experts โดยให้ MTL ทำหน้าที่เป็นกลไก Gating ช่วยเลือกโมเดลที่เหมาะสมกับแต่ละสถานการณ์ เช่น การบดบังใบหน้า ทำให้ระบบสามารถตัดสินใจได้อย่างมีประสิทธิภาพว่าควรใช้โมเดลใดในสภาวะแวดล้อมที่ต่างไป สามารถรักษาความแม่นยำแม้ในสภาวะที่มีความหลากหลายและยังคงรักษาข้อดีในเรื่องของความสามารถในการขยายขนาด (Scaling Up) ได้อย่างมีประสิทธิภาพ
คณะเทคโนโลยีการเกษตร
Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
-
คณะเทคโนโลยีการเกษตร
Mangosteen peel (Garcinia mangostana Linn.) extract using hot water (MPE) has been shown to have antibacterial potential in freshwater sea bass (Lates calcarifer) larvae infected with Aeromonas hydrophila. In vitro studies showed that MPE has a minimum inhibitory concentration (MIC) of 25 ppm and a minimum bactericidal concentration (MBC) of 25 ppm. In vivo, sea bass larvae were immersed in various concentrations of MPE at 0 ppm (control), 20 ppm, 40 ppm and 60 ppm, respectively, for 7 days with A. hydrophila. The results showed that the MPE-treated group had a higher survival rate compared to the control group. Hematological parameters showed that the MPE-treated group had significantly increased red blood cell (RBC), white blood cell (WBC) and hemoglobin (Hb) concentrations compared to the control group. In addition, the water quality parameters were not significantly different, except for ammonia concentration, with MPE having an ammonia concentration of 60 ppm being the lowest. All results can indicate that MPE can improve the antibacterial potential and the culture potential of sea bass larvae.