KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

VIDEO-BASED EMOTION DETECTION FROM FACIAL EXPRESSIONS WITH ROBUSTNESS TO PARTIAL OCCLUSION

Abstract

Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.

Objective

ปัจจุบันการตรวจจับอารมณ์ของมนุษย์ผ่านการแสดงออกทางใบหน้า (Emotion Detection Using Facial Expression) ได้รับความสนใจมากขึ้น เนื่องจากมีการประยุกต์ใช้อย่างแพร่หลายในหลายด้าน เช่น สุขภาพจิตการศึกษา และการบริการลูกค้า อย่างไรก็ตาม การพัฒนาระบบที่มีความแม่นยำและสามารถทนทานต่อการเปลี่ยนแปลงของสภาพแวดล้อม เช่น การบดบังบางส่วนของใบหน้า หรือสภาพแสงที่ไม่สม่ำเสมอ ยังคงเป็นความท้าทายหลัก โดยเฉพาะการพัฒนาโมเดลที่สามารถทำงานได้ในสภาพแวดล้อมที่หลากหลาย จากการศึกษางานวิจัยเกี่ยวกับ Facial Expression Recognition (FER) ผู้วิจัยพบว่าเทคนิค Frame Attention Network (FAN) ซึ่งเป็นการประยุกต์ใช้กลไก Attention จากงานด้านการประมวลผลภาษาสามารถนำมาใช้เพื่อให้ความสำคัญกับเฟรมที่มีความหมายในวิดีโอ ทำให้ระบบสามารถโฟกัสเฉพาะเฟรมที่แสดงอารมณ์ที่สำคัญได้ ซึ่งส่งผลต่อประสิทธิภาพของโมเดล ทีมวิจัยจึงนำเทคนิคนี้มาปรับปรุงเพื่อเพิ่มความทนทานของระบบในการจัดการสถานการณ์ดังกล่าว เพื่อพัฒนาประสิทธิภาพของระบบให้ดียิ่งขึ้น ทีมวิจัยได้ใช้แนวทาง Ensemble Learning ซึ่งเป็นการรวมผลลัพธ์จากหลายโมเดลที่ถูกฝึกในเงื่อนไขเฉพาะ การใช้ Ensemble ช่วยลดข้อผิดพลาดจากการใช้โมเดลเดียว และเพิ่มความแม่นยำและความน่าเชื่อถือของผลลัพธ์ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่หลากหลาย อย่างไรก็ตาม ทีมวิจัยยังได้ขยายการพัฒนาเพิ่มเติมโดยใช้เทคนิค Multi-Task Learning (MTL) เพื่อให้ระบบสามารถเรียนรู้จากหลายงานพร้อมกัน ซึ่งในงานวิจัยนี้ได้นำ MTL มาใช้ใน Mixture of Experts โดยให้ MTL ทำหน้าที่เป็นกลไก Gating ช่วยเลือกโมเดลที่เหมาะสมกับแต่ละสถานการณ์ เช่น การบดบังใบหน้า ทำให้ระบบสามารถตัดสินใจได้อย่างมีประสิทธิภาพว่าควรใช้โมเดลใดในสภาวะแวดล้อมที่ต่างไป สามารถรักษาความแม่นยำแม้ในสภาวะที่มีความหลากหลายและยังคงรักษาข้อดีในเรื่องของความสามารถในการขยายขนาด (Scaling Up) ได้อย่างมีประสิทธิภาพ

Other Innovations

Innovative Seafood Dipping Sauce and Jaew Sauce in Cude Form

คณะบริหารธุรกิจ

Innovative Seafood Dipping Sauce and Jaew Sauce in Cude Form

This project aims to develop seafood dipping sauce and Jaew sauce in solid cube form to address the limitations of liquid sauces, which can be difficult to carry and prone to spillage, as well as powdered sauces, which may lose their texture and authentic flavor. The research and development process focuses on utilizing distinct ingredients and innovative production techniques to enhance the quality and functionality of the product. The primary objective of this project is to introduce an innovative solution that improves the convenience of consumption and transportation while preserving the original taste and quality of traditional dipping sauces. The expected outcome is a novel dipping sauce product in solid cube form that is easy to carry, minimizes the risk of spillage, and holds potential for commercial development in the food industry.

Read more
Innovation in Cotylelobium lanceolatum Craib Extract in the Form of Nano Silver for Diabetic Wound Healing

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Innovation in Cotylelobium lanceolatum Craib Extract in the Form of Nano Silver for Diabetic Wound Healing

Diabetes is a significant global health issue, particularly due to complications related to diabetic wounds. Studies indicate that approximately 15-25% of diabetic patients develop foot ulcers, with more than 50% of severe cases leading to amputation. This results in a substantial decline in the quality of life for patients. Current treatments for diabetic wounds face challenges such as antibiotic-resistant bacterial infections and delayed wound healing, highlighting the need for innovative solutions to accelerate the healing process and reduce the risk of limb loss. Cotylelobium lanceolatum Craib, a medicinal plant long utilized in traditional Thai medicine, is known for its anti-inflammatory and wound-healing properties. This study focuses on developing an extract from Cotylelobium lanceolatum Craib in the form of nano silver (Nano Silver) to enhance the effectiveness of diabetic wound treatment. Nano silver technology enables deeper penetration into the skin, provides potent antibacterial activity, and promotes wound healing by reducing inflammation and stimulating tissue regeneration. The development of nano silver derived from Cotylelobium lanceolatum Craib extract is expected to help reduce chronic wounds in diabetic patients, lower the risk of infection, and decrease the incidence of limb amputation and mortality associated with diabetic wound complications. This research represents a significant step toward creating a safer and more effective treatment alternative for diabetic wound care.

Read more
The extraction of prebiotic from spent coffee grounds

คณะอุตสาหกรรมอาหาร

The extraction of prebiotic from spent coffee grounds

Spent coffee grounds (SCG) are a byproduct of the coffee brewing process, and their quantity continues to increase due to the growing global coffee consumption. SCG contain beneficial compounds such as polysaccharides, dietary fibers, and antioxidants, which can be utilized in various applications, including prebiotic extraction. This study focuses on extracting prebiotics from SCG using acid hydrolysis and enzymatic hydrolysis methods to evaluate their potential in promoting the growth of beneficial gut microorganisms. The expected results of this research include adding value to coffee industry waste, reducing organic waste, and providing a sustainable approach to developing prebiotic products for use in the food and health industries. Furthermore, this study aligns with sustainable resource utilization and environmentally friendly practices.

Read more