KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

VIDEO-BASED EMOTION DETECTION FROM FACIAL EXPRESSIONS WITH ROBUSTNESS TO PARTIAL OCCLUSION

Abstract

Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.

Objective

ปัจจุบันการตรวจจับอารมณ์ของมนุษย์ผ่านการแสดงออกทางใบหน้า (Emotion Detection Using Facial Expression) ได้รับความสนใจมากขึ้น เนื่องจากมีการประยุกต์ใช้อย่างแพร่หลายในหลายด้าน เช่น สุขภาพจิตการศึกษา และการบริการลูกค้า อย่างไรก็ตาม การพัฒนาระบบที่มีความแม่นยำและสามารถทนทานต่อการเปลี่ยนแปลงของสภาพแวดล้อม เช่น การบดบังบางส่วนของใบหน้า หรือสภาพแสงที่ไม่สม่ำเสมอ ยังคงเป็นความท้าทายหลัก โดยเฉพาะการพัฒนาโมเดลที่สามารถทำงานได้ในสภาพแวดล้อมที่หลากหลาย จากการศึกษางานวิจัยเกี่ยวกับ Facial Expression Recognition (FER) ผู้วิจัยพบว่าเทคนิค Frame Attention Network (FAN) ซึ่งเป็นการประยุกต์ใช้กลไก Attention จากงานด้านการประมวลผลภาษาสามารถนำมาใช้เพื่อให้ความสำคัญกับเฟรมที่มีความหมายในวิดีโอ ทำให้ระบบสามารถโฟกัสเฉพาะเฟรมที่แสดงอารมณ์ที่สำคัญได้ ซึ่งส่งผลต่อประสิทธิภาพของโมเดล ทีมวิจัยจึงนำเทคนิคนี้มาปรับปรุงเพื่อเพิ่มความทนทานของระบบในการจัดการสถานการณ์ดังกล่าว เพื่อพัฒนาประสิทธิภาพของระบบให้ดียิ่งขึ้น ทีมวิจัยได้ใช้แนวทาง Ensemble Learning ซึ่งเป็นการรวมผลลัพธ์จากหลายโมเดลที่ถูกฝึกในเงื่อนไขเฉพาะ การใช้ Ensemble ช่วยลดข้อผิดพลาดจากการใช้โมเดลเดียว และเพิ่มความแม่นยำและความน่าเชื่อถือของผลลัพธ์ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่หลากหลาย อย่างไรก็ตาม ทีมวิจัยยังได้ขยายการพัฒนาเพิ่มเติมโดยใช้เทคนิค Multi-Task Learning (MTL) เพื่อให้ระบบสามารถเรียนรู้จากหลายงานพร้อมกัน ซึ่งในงานวิจัยนี้ได้นำ MTL มาใช้ใน Mixture of Experts โดยให้ MTL ทำหน้าที่เป็นกลไก Gating ช่วยเลือกโมเดลที่เหมาะสมกับแต่ละสถานการณ์ เช่น การบดบังใบหน้า ทำให้ระบบสามารถตัดสินใจได้อย่างมีประสิทธิภาพว่าควรใช้โมเดลใดในสภาวะแวดล้อมที่ต่างไป สามารถรักษาความแม่นยำแม้ในสภาวะที่มีความหลากหลายและยังคงรักษาข้อดีในเรื่องของความสามารถในการขยายขนาด (Scaling Up) ได้อย่างมีประสิทธิภาพ

Other Innovations

Wildland Fire Fighter Suit

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Wildland Fire Fighter Suit

The forest firefighting suit consists of the following components and uses: The forest firefighting suit is designed and developed to be suitable for the behavior of the officers and the conditions of the work area, consisting of a shirt and pants. The material used in the sewing of the suit is aramid fabric, which has the property of being able to prevent the spread of fire, to prevent the officers from burning while performing their duties in the event that the forest fire spreads close to them, which is different from the current suits that cannot prevent fires. The shirt is designed with a mesh on the side of the body to release internal heat so that air can circulate well. The sleeves at the elbows have a support point to prevent contact with the ground or obstacles. The collar has a slot for a portable fan and a fan air circulation channel on the back, which can be turned on while performing forest firefighting duties, helping to prevent the body temperature from getting too hot, reducing the risk of heatstroke. When the fan battery runs out, it can be removed for charging and put back in when needed. The pants are designed with mesh on the inside or in blind spots to release internal heat so that air can circulate well. The pants at the knees have a support point to prevent contact with the ground or obstacles. The forest firefighting suit, consisting of a shirt and pants, has been designed and developed to be able to be produced domestically, reducing imports from abroad

Read more
LEARNING ACHIEVEMENT WITH THE USE OF BOARDGAMES ON MUSHROOMS COOPERATED WITH  COOPERATIVE LEARNING FOR THIRD-YEAR VOCATIONAL CERTIFICATE STUDENTS

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

LEARNING ACHIEVEMENT WITH THE USE OF BOARDGAMES ON MUSHROOMS COOPERATED WITH COOPERATIVE LEARNING FOR THIRD-YEAR VOCATIONAL CERTIFICATE STUDENTS

This study aims to develop a board game on mushrooms production with cooperative learning and to examine its effects on the learning achievement of third-year vocational certificate students in the mushroom production course. The research instruments included a board game designed using the Educational Boardgame Design Canvas framework, comprising 60 cards (7 main cards, 24 secondary cards, and 29 additional cards). The board game was implemented alongside the Learning Together (LT) cooperative learning approach, following the ASSURE Model for instructional media design. Pre- and post-tests, along with a satisfaction questionnaire, were used to assess student performance and engagement. The findings revealed a statistically significant improvement at the .05 level in students' learning achievement before and after using the board game. At Ratchaburi College of Agriculture and Technology, the post-test mean score was 16.00, compared to a pre-test mean score of 12.50. Student satisfaction with the learning approach was at the highest level, with an average satisfaction score of 4.69. To further refine and expand the study, the board game was also implemented at the Uthai Thani College of Agriculture and Technology, where similar improvements were observed. The post-test mean score increased to 11.21, compared to a pre-test mean score of 7.48, confirming the research hypothesis. Student satisfaction at Uthai Thani College of Agriculture and Technology was also high, with an average satisfaction score of 4.39. These results suggest that integrating board games with cooperative learning effectively enhances student achievement and engagement in agricultural education.

Read more
The Designing of 3D-Printed Modular Artificial Reef through Design Thinking Framework: A Case study in Koh Khai, Chumphon Province, Thailand

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

The Designing of 3D-Printed Modular Artificial Reef through Design Thinking Framework: A Case study in Koh Khai, Chumphon Province, Thailand

This study explores the design, production, and installation of 3D-printed modular artificial reefs (3DMARs) at Koh Khai, Chumphon Province, Thailand, through a design thinking framework. Collaborating with SCG Co., Ltd. and the Department of Marine and Coastal Resources, the research establishes design criteria and installation methods, utilizing content analysis and qualitative research. Key principles such as modularity, flexibility, environmental sustainability, and usability are identified. The user-centered approach optimizes the 3DMARs for transport and deployment, enabling local community involvement and fostering sustainable practices. The modular design supports scalability, enhancing marine habitats and coral larval settlement. Furthermore, underwater monitoring techniques enable site-specific data collection, allowing for the generation of digital twin models. This research offers a practical framework for marine ecosystem restoration and empowers coastal communities in Thailand and beyond

Read more