KMITL Innovation Expo 2025 Logo

VIDEO-BASED EMOTION DETECTION FROM FACIAL EXPRESSIONS WITH ROBUSTNESS TO PARTIAL OCCLUSION

Abstract

Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.

Objective

ปัจจุบันการตรวจจับอารมณ์ของมนุษย์ผ่านการแสดงออกทางใบหน้า (Emotion Detection Using Facial Expression) ได้รับความสนใจมากขึ้น เนื่องจากมีการประยุกต์ใช้อย่างแพร่หลายในหลายด้าน เช่น สุขภาพจิตการศึกษา และการบริการลูกค้า อย่างไรก็ตาม การพัฒนาระบบที่มีความแม่นยำและสามารถทนทานต่อการเปลี่ยนแปลงของสภาพแวดล้อม เช่น การบดบังบางส่วนของใบหน้า หรือสภาพแสงที่ไม่สม่ำเสมอ ยังคงเป็นความท้าทายหลัก โดยเฉพาะการพัฒนาโมเดลที่สามารถทำงานได้ในสภาพแวดล้อมที่หลากหลาย จากการศึกษางานวิจัยเกี่ยวกับ Facial Expression Recognition (FER) ผู้วิจัยพบว่าเทคนิค Frame Attention Network (FAN) ซึ่งเป็นการประยุกต์ใช้กลไก Attention จากงานด้านการประมวลผลภาษาสามารถนำมาใช้เพื่อให้ความสำคัญกับเฟรมที่มีความหมายในวิดีโอ ทำให้ระบบสามารถโฟกัสเฉพาะเฟรมที่แสดงอารมณ์ที่สำคัญได้ ซึ่งส่งผลต่อประสิทธิภาพของโมเดล ทีมวิจัยจึงนำเทคนิคนี้มาปรับปรุงเพื่อเพิ่มความทนทานของระบบในการจัดการสถานการณ์ดังกล่าว เพื่อพัฒนาประสิทธิภาพของระบบให้ดียิ่งขึ้น ทีมวิจัยได้ใช้แนวทาง Ensemble Learning ซึ่งเป็นการรวมผลลัพธ์จากหลายโมเดลที่ถูกฝึกในเงื่อนไขเฉพาะ การใช้ Ensemble ช่วยลดข้อผิดพลาดจากการใช้โมเดลเดียว และเพิ่มความแม่นยำและความน่าเชื่อถือของผลลัพธ์ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่หลากหลาย อย่างไรก็ตาม ทีมวิจัยยังได้ขยายการพัฒนาเพิ่มเติมโดยใช้เทคนิค Multi-Task Learning (MTL) เพื่อให้ระบบสามารถเรียนรู้จากหลายงานพร้อมกัน ซึ่งในงานวิจัยนี้ได้นำ MTL มาใช้ใน Mixture of Experts โดยให้ MTL ทำหน้าที่เป็นกลไก Gating ช่วยเลือกโมเดลที่เหมาะสมกับแต่ละสถานการณ์ เช่น การบดบังใบหน้า ทำให้ระบบสามารถตัดสินใจได้อย่างมีประสิทธิภาพว่าควรใช้โมเดลใดในสภาวะแวดล้อมที่ต่างไป สามารถรักษาความแม่นยำแม้ในสภาวะที่มีความหลากหลายและยังคงรักษาข้อดีในเรื่องของความสามารถในการขยายขนาด (Scaling Up) ได้อย่างมีประสิทธิภาพ

Other Innovations

Blood Cell Classification

คณะวิศวกรรมศาสตร์

Blood Cell Classification

This project has been developed to address medical challenges related to the process of counting and classifying blood cells from samples, a task that requires both time and high precision. To reduce the workload of medical personnel, the developers have created a platform and an artificial intelligence (AI) system capable of automatically classifying and counting cells from sample images. This system is designed to assist medical laboratory technicians by enabling them to work more efficiently and accurately, reducing the time required for analysis. Furthermore, it promotes the advancement of medical technology, ensuring effective usability from classrooms and laboratories to hospitals.

Read more
New chili varieties resistant to anthracnose and Pepper yellow leaf curl diseases  and high pungency

คณะเทคโนโลยีการเกษตร

New chili varieties resistant to anthracnose and Pepper yellow leaf curl diseases and high pungency

The research aims to develop chili Thai commercial varieties for resistance to anthracnose and Pepper yellow leaf curl virus disease. The varieties allowing farmer to reduce the use of chemical pesticides for disease and pest control, also increases productivity and lowers production costs for farmers. The development new varieties are under studied of undergraduate, master's, and doctoral students by using conventional and molecular plant breeding. The new chili varieties were released to farmer and commercial companies for development for Thai commercial seed industry.

Read more
Self Doubt

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Self Doubt

A Photographic series that expresses the abstract states of myself, towards the question of existence that results from being surrounded by expectations of both surrender and freedom of expression, this series focuses on my own subjectivities in order to bring back memories of almost forgotten feelings and make them clear once more.

Read more