Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.
ปัจจุบันการตรวจจับอารมณ์ของมนุษย์ผ่านการแสดงออกทางใบหน้า (Emotion Detection Using Facial Expression) ได้รับความสนใจมากขึ้น เนื่องจากมีการประยุกต์ใช้อย่างแพร่หลายในหลายด้าน เช่น สุขภาพจิตการศึกษา และการบริการลูกค้า อย่างไรก็ตาม การพัฒนาระบบที่มีความแม่นยำและสามารถทนทานต่อการเปลี่ยนแปลงของสภาพแวดล้อม เช่น การบดบังบางส่วนของใบหน้า หรือสภาพแสงที่ไม่สม่ำเสมอ ยังคงเป็นความท้าทายหลัก โดยเฉพาะการพัฒนาโมเดลที่สามารถทำงานได้ในสภาพแวดล้อมที่หลากหลาย จากการศึกษางานวิจัยเกี่ยวกับ Facial Expression Recognition (FER) ผู้วิจัยพบว่าเทคนิค Frame Attention Network (FAN) ซึ่งเป็นการประยุกต์ใช้กลไก Attention จากงานด้านการประมวลผลภาษาสามารถนำมาใช้เพื่อให้ความสำคัญกับเฟรมที่มีความหมายในวิดีโอ ทำให้ระบบสามารถโฟกัสเฉพาะเฟรมที่แสดงอารมณ์ที่สำคัญได้ ซึ่งส่งผลต่อประสิทธิภาพของโมเดล ทีมวิจัยจึงนำเทคนิคนี้มาปรับปรุงเพื่อเพิ่มความทนทานของระบบในการจัดการสถานการณ์ดังกล่าว เพื่อพัฒนาประสิทธิภาพของระบบให้ดียิ่งขึ้น ทีมวิจัยได้ใช้แนวทาง Ensemble Learning ซึ่งเป็นการรวมผลลัพธ์จากหลายโมเดลที่ถูกฝึกในเงื่อนไขเฉพาะ การใช้ Ensemble ช่วยลดข้อผิดพลาดจากการใช้โมเดลเดียว และเพิ่มความแม่นยำและความน่าเชื่อถือของผลลัพธ์ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่หลากหลาย อย่างไรก็ตาม ทีมวิจัยยังได้ขยายการพัฒนาเพิ่มเติมโดยใช้เทคนิค Multi-Task Learning (MTL) เพื่อให้ระบบสามารถเรียนรู้จากหลายงานพร้อมกัน ซึ่งในงานวิจัยนี้ได้นำ MTL มาใช้ใน Mixture of Experts โดยให้ MTL ทำหน้าที่เป็นกลไก Gating ช่วยเลือกโมเดลที่เหมาะสมกับแต่ละสถานการณ์ เช่น การบดบังใบหน้า ทำให้ระบบสามารถตัดสินใจได้อย่างมีประสิทธิภาพว่าควรใช้โมเดลใดในสภาวะแวดล้อมที่ต่างไป สามารถรักษาความแม่นยำแม้ในสภาวะที่มีความหลากหลายและยังคงรักษาข้อดีในเรื่องของความสามารถในการขยายขนาด (Scaling Up) ได้อย่างมีประสิทธิภาพ
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
In the world of blood donation, there are 2 types of people: those who donate blood and those who don't. Most campaigners emphasize how to persuade more people to donate blood and recruit more new blood donors. We believe that even though such focus is important, there're more critical aspects that might have been neglected, which is: for those who have already made up their minds to be blood doners, will they be successful in donating when the time comes? According to our studies, only 63 % of attempted doners are successful. Regrettably, 37 % has to go home disappointed as their bodies are not fit for the conditions required by Red Cross medical staff at blood donation centers (which include some most basic preparations such as low-fat food intake and 8-hours sleep on the night before). Our campaign, ‘Blood in Need, Buddy Indeed’, focuses on 2 aspects. Firstly, to persuade more people to donate blood. Secondly, for those who have made up their minds to donate blood, we will provide necessary support (both body and mind) so that they are fully prepared and successful in donating blood when the time comes via networks of systems, staffs and the newly designed and prototype of the application ‘Blood D’. Our campaign covers the whole ‘before/during/after’ experience of users (as blood doners). Support includes assessment of their current condition whether they are within the requirement of Red Cross Blood Bank. ‘Blood D’ will also provide relevant information on blood donating events, such as locations, and time booking. Once sign-up, the application “Blood D” will sent friendly reminder and clear infographic on how to prepare their bodies as daily notifications during the 7 days countdown. This is to ensure that the users’ blood will be ‘D’ (homophone of the Thai word ‘ดี’ which mean ‘good’ and at the same time playing on the word ‘ Buddy’) or be the ‘good blood’ that can save lives for those in need. After organizing 4 blood donation events both within and outside the KMITL. The numbers of successful blood doners have increased from 63 % to 78 % (this number is the average of 4 events, with the most successful event of 89%). The campaign has won the first runner up in national blood donation campaign competition. It is highly anticipated that once the application “Blood D” is fully launched, it will help increase the amount of blood collected up to 15% with the same numbers of existing doners.
คณะวิศวกรรมศาสตร์
This project objectives are 1) investigate the utilization of coconut husk and rubber latex in construction applications, 2) determine the optimal ratio of coconut husk and rubber latex mixtures, and 3) test the properties of ceiling panels made from coconut husk and rubber latex composite under Thai Industrial Standard (TIS) 219-2552 for gypsum ceiling boards. The methodology involves the following steps: 1) planning the project, 2) designing the mixture for the coconut husk and rubber latex composite ceiling panels, 3) producing the composite ceiling panels, 4) testing the product for properties according to TIS 219-2552 for gypsum ceiling boards, and 5) summarizing the test results.
คณะอุตสาหกรรมอาหาร
The Ginbanirose project aims to develop herbal extracts for alleviating menstrual pain using key ingredients: roselle, banana inflorescence, and ginger. These ingredients contain bioactive compounds with anti-inflammatory, antioxidant, and pain-relieving properties. The extracts are enhanced through liposome encapsulation technology, which improves absorption and stability. The production process involves herbal extraction, freeze-drying, and liposome formulation using lecithin and stabilizers. Experimental results demonstrate high phenolic content and antioxidant activity via the DPPH method. Ginbanirose addresses women’s quality of life concerns while offering significant business opportunities in the rapidly growing herbal market, particularly in the Asia-Pacific region.