Photocatalytic materials decorated with bi-metallic nanoparticles (Bi-Metallic NPs/ photocatalyst) was synthesized for the degradation of aflatoxin B1. Bi-metallic NPs/ photocatalyst were synthesized by ultrasonic irradiation. The as-synthesized was characterized the chemical characteristics by the transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FT-IR), zeta potential analyzer, and UV-visible spectrophotometer. Bi-metallic NPs/photocatalyst was used to evaluate the degradation efficiency of AFB1 in household wastewater under visible light. The degradation process was analyzed using high-performance liquid chromatography (HPLC) at a wavelength of 365 nm, revealing that AFB1 was completely degraded 100% within 2 minutes. This superior performance is attributed to its highly porous structure, increased specific surface area, and reduced electron-hole recombination rate, which demonstrate that the developed nanomaterial has successfully achieved AFB1 degradation.
เนื่องจาก อะฟลาท็อกซินเป็นสารพิษที่ผลิตจากเชื้อราที่สร้างสารพิษในภาวะที่อาหารมีความชื้นสูง สามารถพบได้ทั่วไปในอาหารและผลผลิตทางการเกษตร ได้แก่ ข้าวโพด มันสำปะหลัง ผักและผลไม้อบแห้ง ธัญพืช หัวหอมแห้ง กระเทียมแห้ง เป็นต้นสารอะฟลาทอกซินมีหลายชนิด เช่น AFB1, AFB2, AFG1, AFG2 โดยเฉพาะ AFB1 ที่มีพิษสูงและสามารถทำลายตับ ทำให้เกิดอาการ อาเจียน ท้องเดิน และในระยะยาวอาจพัฒนาเป็น ตับแข็ง หรือ มะเร็งตับ ดังนั้นหากมีการปนเปื้อนของ AFB1 จากครัวเรือนลงสู่แหล่งน้ำที่มีสภาพแวดล้อมเอื้อต่อการสะสมของสารพิษ เช่น บ่อน้ำ หรือแหล่งน้ำธรรมชาติที่มีการไหลเวียนต่ำ อาจส่งผลกระทบต่อสิ่งแวดล้อมและระบบนิเวศได้ สารอะฟลาท็อกซินสามารถคงอยู่ในสิ่งแวดล้อมเป็นเวลานานและอาจถูกดูดซึมเข้าสู่ห่วงโซ่อาหารผ่านสัตว์น้ำและพืชน้ำ ซึ่งอาจส่งผลกระทบต่อสุขภาพของมนุษย์และสัตว์ที่บริโภคอาหารจากแหล่งน้ำดังกล่าว เพื่อลดความเสี่ยงจากการปนเปื้อนของ AFB1 ในแหล่งน้ำ จึงได้มีการสังเคราะห์วัสดุตัวเร่งปฏิกิริยาเชิงแสงที่ตกแต่งด้วยวัสดุนาโนโลหะ ที่สามารถสลาย AFB1 ในน้ำเสียครัวเรือน สามารถช่วยลดปัญหาการปนเปื้อนของสารพิษในแหล่งน้ำและป้องกันผลกระทบต่อสุขภาพของมนุษย์และสิ่งแวดล้อมได้อย่างมีประสิทธิภาพ

คณะอุตสาหกรรมอาหาร
The "PRIVARY" product is an innovative herbal jelly beverage designed to support weight management and promote health through the benefits of four Thai herbs: roselle, safflower, chrysanthemum, and bitter melon. These herbs are rich in active compounds such as flavonoids, beta-carotene, and anthocyanins, which help reduce blood lipids, prevent inflammation, and exhibit antioxidant properties. The product emphasizes convenience and caters to health-conscious consumers using advanced production techniques like Inverse and External Gelation to create spheres encapsulating key bioactive compounds. Additionally, the product aligns with sustainability goals by enhancing the value of Thai herbs and supporting local communities.

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
This study presents the development of carbon-based multiphase metal oxide nanocomposites (CNF@MOx; M = Ag, Mn, Bi, Fe) incorporating silver, manganese, bismuth, and iron nanoparticles within polyacrylonitrile (PAN)-derived carbon nanofibers. These nanocomposites were fabricated via the electrospinning technique followed by annealing in an argon atmosphere. The resulting nanofibers exhibited a uniform structure, with diameters ranging from 559 to 830 nm and embedded nanoparticles of 9-21 nm. Structural characterization confirmed the presence of various oxidation states of metal oxides, which play a crucial role in charge storage mechanisms. Electrochemical performance testing demonstrated that CNF@Ag/Mn/Bi/Fe-20 achieved the highest specific capacitance of 156 F g⁻¹ at a scan rate of 2 mV s⁻¹ and exhibited excellent cycling stability, retaining over 96% of its capacitance after 1400 charge-discharge cycles. The synergistic combination of electric double-layer capacitance and redox-based charge storage enhances the performance of these nanofibers as promising electrode materials for supercapacitor applications.

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Smart Agriculture has rapidly developed in recent years, particularly with the integration of robotics and automation technologies to improve production efficiency and reduce costs, thereby enhancing the quality of current agricultural practices. A key innovation in this area is the rail-based robotic arm, designed to enhance work efficiency using a rail system with high precision and effectiveness. The application of this robotic arm covers various processes, such as planting, sorting, maintenance, harvesting, and resource management, allowing continuous operation and reducing human labor in repetitive and high-risk tasks. Studies have shown that the use of rail-based robotic arms in agriculture can significantly improve work efficiency, reduce production costs, and effectively mitigate environmental impact. By using robots in agricultural processes, it is possible to reduce contamination, lower the risk of crop damage, and make agriculture more sustainable. Additionally, it can increase accuracy in operations on limited spaces or farms with diverse crops. From these findings, it can be concluded that adopting rail-based robotic arm technology in agriculture not only enhances long-term production efficiency but also promotes sustainable agriculture and maximizes resource use, meeting future agricultural demands