KMITL Innovation Expo 2025 Logo

การพัฒนาระบบโครงข่ายประสาทเทียมแบบ Convolution เพื่อระบุเอกลักษณ์เม็ดยาสามัญประจำบ้าน

รายละเอียด

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาระบบโครงข่ายประสาทเทียมแบบคอนโวลูชัน (Deep Convolutional Neural Networks - CNNs) สำหรับการระบุเม็ดยาอย่างแม่นยำ เพื่อแก้ไขข้อจำกัดของการพิสูจน์เอกลักษณ์เม็ดยาด้วยทรัพยากรมนุษย์ โดยใช้ข้อมูลรูปภาพจำนวน 1,250 ภาพ จากยาสามัญประจำบ้าน 10 ชนิด นำมาทดสอบกับโมเดล YOLO ที่แตกต่างกันภายใต้เงื่อนไขต่างๆ ผลการทดลองพบว่า การใช้แสงธรรมชาติให้ผลดีกว่าเมื่อทดสอบด้วยระบบโครงข่ายประสาทเทียมแบบคอนโวลูชัน เมื่อเปรียบเทียบกับแสงจากกล่องสตูดิโอ นอกจากนี้ โมเดล YOLOv5-tiny แสดงความแม่นยำสูงสุดในการตรวจจับเม็ดยา ขณะที่โมเดล EfficientNet_b0 ให้ผลลัพธ์ดีที่สุดในการจำแนกเม็ดยา แม้ว่าระบบโครงข่ายประสาทเทียมแบบคอนโวลูชันที่พัฒนาขึ้นนี้จะให้ผลลัพธ์ที่น่าพึงพอใจ แต่ยังมีข้อจำกัดในเรื่องชนิดของเม็ดยาและจำนวนภาพที่ใช้ในการศึกษา อย่างไรก็ตาม งานวิจัยนี้มีศักยภาพในการส่งเสริมความปลอดภัยในการใช้ยาทั้งในระบบสาธารณสุขและผู้ป่วยนอก รวมถึงลดปัญหาที่อาจเกิดขึ้นจากการใช้ยาผิดพลาด

วัตถุประสงค์

The increasing complexity of pharmaceutical treatments requires precise pill identification to ensure patient safety. Traditional methods for pill reconciliation rely on human experts, which are time-consuming and prone to errors. Deep Convolutional Neural Networks (CNNs), particularly effective in image processing, offer a promising solution for automating and enhancing these processes.

นวัตกรรมอื่น ๆ

บ้านไม้ ของชายทั้ง 5

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

บ้านไม้ ของชายทั้ง 5

โครงการศึกษาการถ่ายเทน้ำหนักของโครงสร้างบ้านไม้มีเป้าหมายเพื่อวิเคราะห์หลักการกระจายน้ำหนักภายในโครงสร้าง โดยศึกษาองค์ประกอบสำคัญ เช่น คาน เสา และพื้น รวมถึงพฤติกรรมการรับแรงของไม้ภายใต้ภาระที่แตกต่างกัน การวิจัยนี้ใช้การคำนวณเชิงโครงสร้างและการจำลองโมเดลเพื่อตรวจสอบรูปแบบการถ่ายเทน้ำหนัก นอกจากนี้ ยังช่วยพัฒนาทักษะการออกแบบ การวิเคราะห์ และการทำงานเป็นทีม ซึ่งสามารถนำไปประยุกต์ใช้กับงานก่อสร้างจริงได้อย่างเหมาะสม

การประมาณสถานะสุขภาพของแบตเตอรี่ลิเทียม

คณะวิศวกรรมศาสตร์

การประมาณสถานะสุขภาพของแบตเตอรี่ลิเทียม

ปัจจุบันแบตเตอรี่ลิเทียมถูกใช้งานอย่างแพร่หลายในอุปกรณ์อิเล็กทรอนิกส์และยานยนต์ไฟฟ้า ทำให้การประมาณสถานะสุขภาพ (State of Health: SOH) ของแบตเตอรี่มีความสำคัญอย่างมาก เนื่องจากสามารถช่วยยืดอายุการใช้งาน ลดค่าใช้จ่ายในการบำรุงรักษา และป้องกันปัญหาด้านความปลอดภัย เช่น ความร้อนสูงเกินหรือการระเบิด โครงงานนี้มีวัตถุประสงค์เพื่อศึกษาและวิเคราะห์แบบจำลองทางคณิตศาสตร์ของแบตเตอรี่ ตลอดจนพัฒนาเทคนิคการประมาณสถานะสุขภาพโดยใช้โครงข่ายประสาทเทียม (Neural Networks) เพื่อเพิ่มความแม่นยำและความรวดเร็วในการประเมิน การทดลองได้ทำการเก็บข้อมูลการประจุและคายประจุของแบตเตอรี่ลิเทียมจำนวน 3 เซลล์ ภายใต้อุณหภูมิที่ควบคุม และใช้กระแสคงที่ในการชาร์จและคายประจุไฟฟ้า พร้อมทั้งบันทึกค่ากระแส แรงดัน และเวลา จากนั้นนำข้อมูลที่ได้มาวิเคราะห์เพื่อหาค่าความจุของแบตเตอรี่ในแต่ละรอบการใช้งาน และใช้เป็นข้อมูลฝึกสอนโครงข่ายประสาทเทียม ผลลัพธ์ที่ได้ช่วยให้สามารถคาดการณ์สถานะสุขภาพของแบตเตอรี่ได้อย่างมีประสิทธิภาพ ผลจากโครงงานนี้สามารถนำไปพัฒนาระบบจัดการแบตเตอรี่ (Battery Management System) เพื่อช่วยปรับปรุงประสิทธิภาพและยืดอายุการใช้งานของแบตเตอรี่ ทั้งยังเป็นแนวทางในการนำเทคนิคปัญญาประดิษฐ์มาประยุกต์ใช้ในงานด้านพลังงานอย่างมีประสิทธิภาพ

สเปกโตรโฟโตมิเตอร์แบบพิมพ์สามมิติสำหรับการตรวจวัดฟอร์มาลดีไฮด์ ในอาหารทะเลสด

คณะวิศวกรรมศาสตร์

สเปกโตรโฟโตมิเตอร์แบบพิมพ์สามมิติสำหรับการตรวจวัดฟอร์มาลดีไฮด์ ในอาหารทะเลสด

งานวิจัยนี้ศึกษาการสร้างสเปกโตรโฟโตมิเตอร์แบบพิมพ์ 3 มิติ ซึ่งได้ทำการสร้างสเปกโตรโฟโตมิเตอร์แบบพิมพ์ 3 มิติ ด้วยโปรแกรม AutoCAD ทำให้ตัวเครื่องนั้นมีความแข็งแรงทนทาน ต้นทุนต่ำ และพกพาสะดวก เพื่อใช้ในการตรวจวัดปริมาณฟอร์มาลดีไฮด์ในอาหารทะเลสด