KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

PRODUCTION OF PYROLYSIS OIL FROM LANDFILLED PLASTIC WASTES FOR UTILIZATION AS A RENEWABLE FUEL

Abstract

The aim of experiment was to study the pyrolysis oil derived from sorted landfill plastic waste that had been buried for 15 years by the Nonthaburi Provincial Administrative Organization. The pyrolysis oil was produced using a Fixed-Bed Reactor at 450 °C for 1.5 hours with LPG as the feedstock, with the goal of using the pyrolysis oil as an alternative fuel. The experiment was conducted under four different conditions : (1) plastic waste buried in a landfill that has not been washed but has been reduced in size, (2) plastic waste buried in a landfill that has been washed and has been reduced in size, (3) plastic waste buried in a landfill that not has been washed and has not been reduced in size, (4) plastic waste buried in a landfill that has not been washed and has been reduced size, with activated carbon used as a catalyst. The experiment revealed that three products were produced : Oil, gas, and char in different quantity. The pyrolysis oil were compared in terms of quality based on pH, Heating value, Moisture content, Functional group, and Chemical Composition. The pyrolysis oil we obtained will be referenced according to the criteria from the Department of Energy Business. The analysis results of the pyrolysis can explain which conditions are suitable for replacing fuel oil in industrial It is therefore one of the approaches that helps manage plastic waste in landfills, reducing the quantity by converting it into usable energy.

Objective

ปัจจุบันประเทศไทยประสบปัญหาด้านมลพิษและสิ่งแวดล้อมจากขยะมูลฝอยชุมชนที่ตกค้างอยู่ภายในสิ่งแวดล้อม จากรายงานสถานการณ์มลพิษของประเทศไทย ปี พ.ศ.2566 โดยกรมควบคุมมลพิษ พบว่า ประเทศไทยมีขยะมูลฝอยเกิดขึ้นประมาณ 26.95 ล้านตัน หรือประมาณ 73,840 ตัน/วัน กระจายตัวตามภูมิภาคต่าง ๆ ซึ่งมีปริมาณขยะพลาสติกรวมอยู่ด้วย คาดว่ามีขยะพลาสติกแบบใช้ครั้งเดียว (Single-use Plastics) ประมาณปีละ 3.03 ล้านตันของปริมาณขยะที่เกิดขึ้นทั้งหมดในประเทศ (คิดเป็นร้อยละ 11.25) เพิ่มขึ้นจากปี พ.ศ.2565 ประมาณ 0.2 ล้านตัน และมีการนำกลับไปใช้ ประโยชน์ประมาณปีละ 0.75 ล้านตัน (คิดเป็นร้อยละ 25) ส่วนที่เหลือ 2.18 ล้านตัน (คิดเป็นร้อยละ 72) จะถูกนำไปกำจัดโดยการฝังกลบรวมกับขยะมูลฝอยอื่นๆ อีก 0.09 ล้านตัน (คิดเป็นร้อยละ 3) (กรมควบคุมมลพิษ, 2566) ซึ่งการจัดการขยะพลาสติกเหล่านี้ต้องมีการอาศัยเทคโนโลยีเข้ามาช่วยในการจัดการ ซึ่งการนำไปผลิตเป็นเชื้อเพลิงทดแทนผ่านกระบวนการไพโรไลซิส (Pyrolysis) เป็นอีกกระบวนการที่สามารถจัดการขยะพลาสติกเหล่านี้ได้ โดยแผนพัฒนาพลังงานทดแทนและพลังงานทางเลือก พ.ศ. 2561 - 2580 (AEDP 2018) มีการตั้งเป้าหมายการผลิตเชื้อเพลิงทดแทนในภาคขนส่งประเภทน้ำมันไพโรไลซิส 0.53 ล้านลิตร/วัน ในปี พ.ศ.2580 จึงมีความสำคัญในการพัฒนาเทคโนโลยีดังกล่าวเพื่อการใช้งานได้จริงและแพร่หลาย ไม่ว่าจะเป็นการใช้ในภาคการขนส่งหรือแม้แต่ภาคอุตสาหกรรม (กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, 2563) ในงานวิจัยนี้จึงมีความสนใจในการศึกษาการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) โดยใช้กระบวนการไพโรไลซิส (pyrolysis) ซึ่งมีก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงให้ความร้อนในการผลิตน้ำมันจากขยะพลาสติกฝังกลบ โดยทำการเปรียบเทียบปริมาณ ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้กับการผลิตน้ำมันไพโรไลซิสจากขยะฝังกลบพลาสติกโดยใช้กระบวนการไพโรไลซิส (pyrolysis) และการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ซึ่งมีการเตรียมตัวอย่างพลาสติกฝังกลบที่นำมาใช้เป็นวัตถุดิบในการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบในรูปแบบที่แตกต่างกัน และมีการใช้ตัวเร่งปฏิกิริยา คือ ถ่านกัมมันต์ (Activated Carbon) โดยจะมีการใช้ความร้อนที่อุณหภูมิ 450 องศาเซลเซียส งานวิจัยที่ผ่านมามีการศึกษาโดยเครื่องมือวิเคราะห์ที่ใช้ศึกษาลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติก ได้แก่ ทำการวิเคราะห์ค่าความเป็นกรด-ด่าง (pH) ด้วยเครื่องมือวัดค่าความเป็นกรด-ด่าง (pH meter) การวิเคราะห์หมู่ฟังก์ชั่น (Functional group) ด้วยเครื่องวิเคราะห์หาองค์ประกอบทางโครงสร้างเคมีของสารโดยใช้ความยาวคลื่นช่วงอินฟราเรด (Fourier Transform Infrared Spectrometer) การวิเคราะห์หาค่าความร้อน (Heating Value) ด้วยเครื่องวิเคราะห์ค่าความร้อน (Bomb Calorimeter) และการวิเคราะห์เถ้า (Ash) ด้วยเตาเผาอุณหภูมิสูง จากงานวิจัยของ Noppadol Pringsakul และคณะ (2024) พบว่ากระบวนการไพโรไลซิสขยะพลาสติกที่อุณหภูมิ 450 องศาเซลเซียส โดยการใช้เตาปฏิกรณ์แบบ Batch ปริมาณน้ำมันไพโรไลซิสที่ทำการผลิตได้มาจากส่วนที่มีการหล่อเย็นด้วยน้ำมากที่สุด โดยค่าความร้อน (Heating Value) สูงสุด มีค่าเท่ากับ 40 - 45 MJ/kg และองค์ประกอบที่วิเคราะห์ได้ ประกอบด้วย ไฮโดรคาร์บอน (Hydrocarbon) กรดคาร์บอกซิลิก (Carboxylic Acid) คาร์บอนิล (Carbonyl) และสารประกอบอะโรมาติก และจากงานวิจัยของ ปรางค์ทิพย์ ฤทธิโชติ แก้วเพ็งกรอ และคณะ (2023) พบว่าการผลิตเชื้อเพลิงทดแทนจากขยะพลาสติกฝังกลบ ค่าความชื้น (Moisture Content) ของผลิตภัณฑ์ที่ผลิตได้มีค่าลดลง และมีค่าความร้อน (Heating Value) เพิ่มขึ้น เท่ากับ 18.08 – 29.41 MJ/kg และพบปริมาณของคาร์บอนที่มากเกินพอเหมาะสมที่จะนำขยะพลาสติกมาผลิตเป็นเชื้อเพลิงทดแทนได้ ในงานวิจัยนี้ศึกษาการวิเคราะห์ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้ทำการเปรียบเทียบกับลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากเทคนิคทางเคมีและความร้อน และศึกษามาตรฐานน้ำมันเตาที่ใช้ในภาคอุตสาหกรรมประเทศไทย ผลการวิเคราะห์ทดสอบจากงานวิจัยนี้สามารถเป็นข้อมูลสำหรับการนำไปศึกษาต่อถึงความเป็นไปได้ในการนำกระบวนการไพโรไลซิสโดยมีการใช้เตาปฏิกรณ์ที่มีแหล่งความร้อนแตกต่างกันมาผลิตเป็นเชื้อเพลิงทดแทนเพื่อใช้ในภาคการขนส่งหรือภาคอุตสาหกรรม และเป็นการลดจำนวนขยะพลาสติกฝังกลบให้มีปริมาณน้อยลง ลดปัญหามลพิษต่อสิ่งแวดล้อม รวมไปถึงเพิ่มมูลค่าของเสียให้สามารถนำไปใช้ประโยชน์ได้หลากหลายยิ่งขึ้น และมีความคุ้มค่าต่อการนำไปใช้งาน

Other Innovations

Production of Lactic acid bacteria prototype from Thailand for use as probiotics for livestock animals

คณะเทคโนโลยีการเกษตร

Production of Lactic acid bacteria prototype from Thailand for use as probiotics for livestock animals

This research gives a comprehensive overview of the use of antibiotics in livestock production, highlighting both the benefits and the risks associated with their use. The benefits, such as improving immunity, digestion, and reducing infections, are contrasted with the growing concern over antibiotic residues and the development of drug resistance. The shift towards alternatives like probiotics is explored as a sustainable solution, with a specific focus on lactic acid bacteria (LAB) found in the digestive systems of livestock. Thailand’s regulations, which control antibiotic use in animal feed, are also discussed, setting the stage for the study on LAB as a potential replacement for imported probiotics. 1. Use of Antibiotics in Livestock: Antibiotics have been used to promote growth, improve digestion, and prevent infections in livestock. However, the improper use of antibiotics can lead to residues in animal products and the development of drug-resistant bacteria. 2. Global Trends in Antibiotic Use: Many countries, like the European Union and Japan, have banned antibiotics as growth promoters, while others, like China and the U.S., are planning similar bans. 3. Thailand's Approach: Thailand has implemented a regulation since September 2020 to control the use of antibiotics in animal feed, requiring control at both feed mills and farms that mix their own feed. 4. Probiotics as an Alternative: Probiotics, particularly lactic acid bacteria (LAB), are being studied as an alternative to antibiotics. LAB are naturally found in the digestive tracts of livestock and are considered beneficial for maintaining gut health and replacing the need for antibiotics. The study examines the potential of LAB from Thai livestock (broilers, pigs, and cattle) as a sustainable alternative to imported probiotics, aiming to overcome issues like low survival rates of foreign probiotics in practice.

Read more
Sustainable conservation and utilization of Melaleuca cajuputi Powell

คณะเทคโนโลยีการเกษตร

Sustainable conservation and utilization of Melaleuca cajuputi Powell

This research investigates the traditional knowledge, biological characteristics, and bioactive compounds of Melaleuca cajuputi Powell, with a focus on its conservation and sustainable utilization. The study encompasses its applications in agriculture, healthcare, and bioenergy.

Read more
Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice  using Near-Infrared Spectroscopy

คณะวิศวกรรมศาสตร์

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice using Near-Infrared Spectroscopy

This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.

Read more