KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

การผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบเพื่อใช้เป็นเชื้อเพลิงทดแทน

รายละเอียด

งานวิจัยนี้เป็นการศึกษาการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ผ่านการคัดแยกจากหลุมฝังกลบขยะมูลฝอยอายุ 15 ปี จากองค์การบริหารส่วนจังหวัดนนทบุรี เพื่อนำมาผลิตเป็นเชื้อเพลิงทดแทนด้วยเตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ที่อุณหภูมิ 450 องศาเซลเซียส ระยะเวลา 1 ชั่วโมง 30 นาที โดยใช้ก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงในการให้ความร้อน มีการออกแบบการทดลองออกเป็น 4 สภาวะ คือ ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ผ่านการล้างและตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างและตัดลดขนาด และตัวอย่างขยะพลาสติกฝังกลบยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด และใช้ถ่านกัมมันต์เป็นตัวเร่งปฏิกิริยา พบว่าผลิตภัณฑ์ที่ได้มีทั้งหมด 3 ประเภท คือ น้ำมัน (Py-oil) ถ่าน (Char) และก๊าซ (Gas) ในปริมาณที่แตกต่างกันออกไป นอกจากนี้ยังมีการเปรียบเทียบลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบ ได้แก่ ค่าความเป็นกรด-ด่าง (pH) ค่าความร้อน (Heating Value) ค่าความชื้น (Moisture content) เถ้า (Ash) และหมู่ฟังก์ชั่น (Functional group) รวมไปถึงองค์ประกอบทางเคมี โดยใช้การอ้างอิงมาตรฐานน้ำมันเตาตามประกาศกรมธุรกิจพลังงานเป็นเกณฑ์ ผลการวิเคราะห์ ที่ได้จึงสามารถอธิบายได้ว่าน้ำมันจากการไพโรไลซิสขยะพลาสติกฝังกลบในสภาวะใดที่มีความเหมาะสมและมีความคุ้มค่ากับการนำมาผลิตเชื้อเพลิงทดแทนน้ำมันเตาที่มีการใช้ในภาคอุตสาหกรรมได้ งานวิจัยนี้เป็นอีกหนึ่งแนวทางเลือกที่ช่วยในการจัดการขยะพลาสติกในบ่อฝังกลบให้มีปริมาณลดน้อยลง โดยเปลี่ยนขยะมูลฝอยให้เป็นเชื้อเพลิงทดแทนที่นำไปใช้ประโยชน์ได้จริง

วัตถุประสงค์

ปัจจุบันประเทศไทยประสบปัญหาด้านมลพิษและสิ่งแวดล้อมจากขยะมูลฝอยชุมชนที่ตกค้างอยู่ภายในสิ่งแวดล้อม จากรายงานสถานการณ์มลพิษของประเทศไทย ปี พ.ศ.2566 โดยกรมควบคุมมลพิษ พบว่า ประเทศไทยมีขยะมูลฝอยเกิดขึ้นประมาณ 26.95 ล้านตัน หรือประมาณ 73,840 ตัน/วัน กระจายตัวตามภูมิภาคต่าง ๆ ซึ่งมีปริมาณขยะพลาสติกรวมอยู่ด้วย คาดว่ามีขยะพลาสติกแบบใช้ครั้งเดียว (Single-use Plastics) ประมาณปีละ 3.03 ล้านตันของปริมาณขยะที่เกิดขึ้นทั้งหมดในประเทศ (คิดเป็นร้อยละ 11.25) เพิ่มขึ้นจากปี พ.ศ.2565 ประมาณ 0.2 ล้านตัน และมีการนำกลับไปใช้ ประโยชน์ประมาณปีละ 0.75 ล้านตัน (คิดเป็นร้อยละ 25) ส่วนที่เหลือ 2.18 ล้านตัน (คิดเป็นร้อยละ 72) จะถูกนำไปกำจัดโดยการฝังกลบรวมกับขยะมูลฝอยอื่นๆ อีก 0.09 ล้านตัน (คิดเป็นร้อยละ 3) (กรมควบคุมมลพิษ, 2566) ซึ่งการจัดการขยะพลาสติกเหล่านี้ต้องมีการอาศัยเทคโนโลยีเข้ามาช่วยในการจัดการ ซึ่งการนำไปผลิตเป็นเชื้อเพลิงทดแทนผ่านกระบวนการไพโรไลซิส (Pyrolysis) เป็นอีกกระบวนการที่สามารถจัดการขยะพลาสติกเหล่านี้ได้ โดยแผนพัฒนาพลังงานทดแทนและพลังงานทางเลือก พ.ศ. 2561 - 2580 (AEDP 2018) มีการตั้งเป้าหมายการผลิตเชื้อเพลิงทดแทนในภาคขนส่งประเภทน้ำมันไพโรไลซิส 0.53 ล้านลิตร/วัน ในปี พ.ศ.2580 จึงมีความสำคัญในการพัฒนาเทคโนโลยีดังกล่าวเพื่อการใช้งานได้จริงและแพร่หลาย ไม่ว่าจะเป็นการใช้ในภาคการขนส่งหรือแม้แต่ภาคอุตสาหกรรม (กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, 2563) ในงานวิจัยนี้จึงมีความสนใจในการศึกษาการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) โดยใช้กระบวนการไพโรไลซิส (pyrolysis) ซึ่งมีก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงให้ความร้อนในการผลิตน้ำมันจากขยะพลาสติกฝังกลบ โดยทำการเปรียบเทียบปริมาณ ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้กับการผลิตน้ำมันไพโรไลซิสจากขยะฝังกลบพลาสติกโดยใช้กระบวนการไพโรไลซิส (pyrolysis) และการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ซึ่งมีการเตรียมตัวอย่างพลาสติกฝังกลบที่นำมาใช้เป็นวัตถุดิบในการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบในรูปแบบที่แตกต่างกัน และมีการใช้ตัวเร่งปฏิกิริยา คือ ถ่านกัมมันต์ (Activated Carbon) โดยจะมีการใช้ความร้อนที่อุณหภูมิ 450 องศาเซลเซียส งานวิจัยที่ผ่านมามีการศึกษาโดยเครื่องมือวิเคราะห์ที่ใช้ศึกษาลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติก ได้แก่ ทำการวิเคราะห์ค่าความเป็นกรด-ด่าง (pH) ด้วยเครื่องมือวัดค่าความเป็นกรด-ด่าง (pH meter) การวิเคราะห์หมู่ฟังก์ชั่น (Functional group) ด้วยเครื่องวิเคราะห์หาองค์ประกอบทางโครงสร้างเคมีของสารโดยใช้ความยาวคลื่นช่วงอินฟราเรด (Fourier Transform Infrared Spectrometer) การวิเคราะห์หาค่าความร้อน (Heating Value) ด้วยเครื่องวิเคราะห์ค่าความร้อน (Bomb Calorimeter) และการวิเคราะห์เถ้า (Ash) ด้วยเตาเผาอุณหภูมิสูง จากงานวิจัยของ Noppadol Pringsakul และคณะ (2024) พบว่ากระบวนการไพโรไลซิสขยะพลาสติกที่อุณหภูมิ 450 องศาเซลเซียส โดยการใช้เตาปฏิกรณ์แบบ Batch ปริมาณน้ำมันไพโรไลซิสที่ทำการผลิตได้มาจากส่วนที่มีการหล่อเย็นด้วยน้ำมากที่สุด โดยค่าความร้อน (Heating Value) สูงสุด มีค่าเท่ากับ 40 - 45 MJ/kg และองค์ประกอบที่วิเคราะห์ได้ ประกอบด้วย ไฮโดรคาร์บอน (Hydrocarbon) กรดคาร์บอกซิลิก (Carboxylic Acid) คาร์บอนิล (Carbonyl) และสารประกอบอะโรมาติก และจากงานวิจัยของ ปรางค์ทิพย์ ฤทธิโชติ แก้วเพ็งกรอ และคณะ (2023) พบว่าการผลิตเชื้อเพลิงทดแทนจากขยะพลาสติกฝังกลบ ค่าความชื้น (Moisture Content) ของผลิตภัณฑ์ที่ผลิตได้มีค่าลดลง และมีค่าความร้อน (Heating Value) เพิ่มขึ้น เท่ากับ 18.08 – 29.41 MJ/kg และพบปริมาณของคาร์บอนที่มากเกินพอเหมาะสมที่จะนำขยะพลาสติกมาผลิตเป็นเชื้อเพลิงทดแทนได้ ในงานวิจัยนี้ศึกษาการวิเคราะห์ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้ทำการเปรียบเทียบกับลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากเทคนิคทางเคมีและความร้อน และศึกษามาตรฐานน้ำมันเตาที่ใช้ในภาคอุตสาหกรรมประเทศไทย ผลการวิเคราะห์ทดสอบจากงานวิจัยนี้สามารถเป็นข้อมูลสำหรับการนำไปศึกษาต่อถึงความเป็นไปได้ในการนำกระบวนการไพโรไลซิสโดยมีการใช้เตาปฏิกรณ์ที่มีแหล่งความร้อนแตกต่างกันมาผลิตเป็นเชื้อเพลิงทดแทนเพื่อใช้ในภาคการขนส่งหรือภาคอุตสาหกรรม และเป็นการลดจำนวนขยะพลาสติกฝังกลบให้มีปริมาณน้อยลง ลดปัญหามลพิษต่อสิ่งแวดล้อม รวมไปถึงเพิ่มมูลค่าของเสียให้สามารถนำไปใช้ประโยชน์ได้หลากหลายยิ่งขึ้น และมีความคุ้มค่าต่อการนำไปใช้งาน

นวัตกรรมอื่น ๆ

Dream High ผลิตภัณฑ์จากไมซีเลียม

คณะบริหารธุรกิจ

Dream High ผลิตภัณฑ์จากไมซีเลียม

ในโลกที่ให้ความสําคัญกับความยั่งยืนและลดผลกระทบต่อสิ่งแวดล้อมมากขึ้น DreamHigh เป็นผู้บุกเบิกแนวทางที่เป็นนวัตกรรมในการแก้ปัญหาบรรจุภัณฑ์โดยใช้ไมซีเลียม ซึ่งเป็นวัสดุธรรมชาติที่ย่อยสลายได้ทางชีวภาพ และทดแทนได้จากเชื้อรา ภารกิจของเราคือการปฏิวัติอุตสาหกรรมบรรจุภัณฑ์โดยนําเสนอทางเลือกที่เป็นมิตรกับสิ่งแวดล้อมที่ไม่เพียงแต่ลดขยะเท่านั้น แต่ยังสอดคล้องกับความพยายามระดับโลกในการต่อสู้กับการเปลี่ยนแปลงสภาพภูมิอากาศอีกด้วย บรรจุภัณฑ์ไมซีเลียมเสนอทางเลือกที่น่าสนใจสําหรับบรรจุภัณฑ์พลาสติกและสไตโรโฟมแบบดั้งเดิม ซึ่งมีส่วนสําคัญต่อมลภาวะต่อสิ่งแวดล้อม สามารถย่อยสลายได้ทางชีวภาพอย่างสมบูรณ์ ย่อยสลายได้ และสามารถย่อยสลายได้ในสภาพแวดล้อมทางธรรมชาติภายในไม่กี่สัปดาห์ โดยไม่ทิ้งสารพิษตกค้างไว้ข้างหลัง นอกจากนี้ ผลิตภัณฑ์ที่ใช้ไมซีเลียมมีน้ําหนักเบา ทนทาน และปรับแต่งได้ ทําให้เหมาะสําหรับการใช้งานที่หลากหลาย ตั้งแต่บรรจุภัณฑ์สินค้าอุปโภคบริโภคไปจนถึงวัสดุป้องกันการจัดส่ง แผนธุรกิจของ DreamHigh ได้สรุปกระบวนการผลิตที่ปรับขนาดได้โดยใช้เทคนิคการเพาะปลูกไมซีเลียมขั้นสูงและความร่วมมือกับภาคเกษตรกรรมในท้องถิ่นเพื่อใช้ของเสียทางการเกษตรเป็นวัตถุดิบหลัก สิ่งนี้ไม่เพียงแต่ช่วยให้มั่นใจถึงประสิทธิภาพด้านต้นทุนเท่านั้น แต่ยังสนับสนุนเศรษฐกิจหมุนเวียนด้วยการนําของเสียที่จะถูกทิ้งไปใช้ประโยชน์ใหม่

การพัฒนาระบบโครงข่ายประสาทเทียมแบบ Convolution เพื่อระบุเอกลักษณ์เม็ดยาสามัญประจำบ้าน

คณะแพทยศาสตร์

การพัฒนาระบบโครงข่ายประสาทเทียมแบบ Convolution เพื่อระบุเอกลักษณ์เม็ดยาสามัญประจำบ้าน

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาระบบโครงข่ายประสาทเทียมแบบคอนโวลูชัน (Deep Convolutional Neural Networks - CNNs) สำหรับการระบุเม็ดยาอย่างแม่นยำ เพื่อแก้ไขข้อจำกัดของการพิสูจน์เอกลักษณ์เม็ดยาด้วยทรัพยากรมนุษย์ โดยใช้ข้อมูลรูปภาพจำนวน 1,250 ภาพ จากยาสามัญประจำบ้าน 10 ชนิด นำมาทดสอบกับโมเดล YOLO ที่แตกต่างกันภายใต้เงื่อนไขต่างๆ ผลการทดลองพบว่า การใช้แสงธรรมชาติให้ผลดีกว่าเมื่อทดสอบด้วยระบบโครงข่ายประสาทเทียมแบบคอนโวลูชัน เมื่อเปรียบเทียบกับแสงจากกล่องสตูดิโอ นอกจากนี้ โมเดล YOLOv5-tiny แสดงความแม่นยำสูงสุดในการตรวจจับเม็ดยา ขณะที่โมเดล EfficientNet_b0 ให้ผลลัพธ์ดีที่สุดในการจำแนกเม็ดยา แม้ว่าระบบโครงข่ายประสาทเทียมแบบคอนโวลูชันที่พัฒนาขึ้นนี้จะให้ผลลัพธ์ที่น่าพึงพอใจ แต่ยังมีข้อจำกัดในเรื่องชนิดของเม็ดยาและจำนวนภาพที่ใช้ในการศึกษา อย่างไรก็ตาม งานวิจัยนี้มีศักยภาพในการส่งเสริมความปลอดภัยในการใช้ยาทั้งในระบบสาธารณสุขและผู้ป่วยนอก รวมถึงลดปัญหาที่อาจเกิดขึ้นจากการใช้ยาผิดพลาด

การตรวจสอบโรคในใบทุเรียนด้วยภาพถ่ายและปัญญาประดิษฐ์

คณะเทคโนโลยีการเกษตร

การตรวจสอบโรคในใบทุเรียนด้วยภาพถ่ายและปัญญาประดิษฐ์

ทุเรียนเป็นพืชเศรษฐกิจที่สำคัญของประเทศไทยและเป็นสินค้าส่งออกที่มีปริมาณสูงที่สุดในโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงจำเป็นต้องอาศัยการดูแลสุขภาพของต้นทุเรียนให้แข็งแรงและปราศจากโรค เพื่อให้สามารถให้ผลผลิตได้อย่างมีประสิทธิภาพ และลดความเสียหายที่อาจเกิดขึ้นกับทั้งต้นและผลทุเรียน โรคที่พบได้บ่อยและสามารถแพร่กระจายได้อย่างรวดเร็ว มักเป็นโรคที่เกิดขึ้นบริเวณใบ ซึ่งส่งผลกระทบโดยตรงต่อการเจริญเติบโตของต้นทุเรียนและคุณภาพของผลผลิต การตรวจสอบและควบคุมโรคทางใบจึงเป็นปัจจัยสำคัญในการรักษาคุณภาพของทุเรียน งานวิจัยนี้มีวัตถุประสงค์เพื่อนำเทคโนโลยีการวิเคราะห์ภาพถ่ายร่วมกับปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกโรคที่เกิดขึ้นในใบทุเรียน เพื่อให้เกษตรกรสามารถตรวจสอบโรคได้ด้วยตนเองโดยไม่ต้องอาศัยผู้เชี่ยวชาญ โดยจำแนกใบออกเป็น 3 ประเภท ได้แก่ ใบสุขภาพดี (Healthy: H) ใบที่ติดเชื้อแอนแทรคโนส (Anthracnose: A) และใบที่ติดเชื้อจุดสาหร่าย (Algal Spot: S) ทั้งนี้ ได้นำอัลกอริทึม Convolutional Neural Networks (CNN) ได้แก่ ResNet-50, GoogleNet และ AlexNet มาใช้ในการพัฒนาแบบจำลองเพื่อจำแนกประเภทของโรค ผลการทดลองพบว่า แบบจำลองที่ใช้ ResNet-50, GoogleNet และ AlexNet ให้ค่าความแม่นยำในการจำแนกใบเท่ากับ 93.57%, 93.95% และ 68.69% ตามลำดับ