งานวิจัยนี้เป็นการศึกษาการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ผ่านการคัดแยกจากหลุมฝังกลบขยะมูลฝอยอายุ 15 ปี จากองค์การบริหารส่วนจังหวัดนนทบุรี เพื่อนำมาผลิตเป็นเชื้อเพลิงทดแทนด้วยเตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ที่อุณหภูมิ 450 องศาเซลเซียส ระยะเวลา 1 ชั่วโมง 30 นาที โดยใช้ก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงในการให้ความร้อน มีการออกแบบการทดลองออกเป็น 4 สภาวะ คือ ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ผ่านการล้างและตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างและตัดลดขนาด และตัวอย่างขยะพลาสติกฝังกลบยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด และใช้ถ่านกัมมันต์เป็นตัวเร่งปฏิกิริยา พบว่าผลิตภัณฑ์ที่ได้มีทั้งหมด 3 ประเภท คือ น้ำมัน (Py-oil) ถ่าน (Char) และก๊าซ (Gas) ในปริมาณที่แตกต่างกันออกไป นอกจากนี้ยังมีการเปรียบเทียบลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบ ได้แก่ ค่าความเป็นกรด-ด่าง (pH) ค่าความร้อน (Heating Value) ค่าความชื้น (Moisture content) เถ้า (Ash) และหมู่ฟังก์ชั่น (Functional group) รวมไปถึงองค์ประกอบทางเคมี โดยใช้การอ้างอิงมาตรฐานน้ำมันเตาตามประกาศกรมธุรกิจพลังงานเป็นเกณฑ์ ผลการวิเคราะห์ ที่ได้จึงสามารถอธิบายได้ว่าน้ำมันจากการไพโรไลซิสขยะพลาสติกฝังกลบในสภาวะใดที่มีความเหมาะสมและมีความคุ้มค่ากับการนำมาผลิตเชื้อเพลิงทดแทนน้ำมันเตาที่มีการใช้ในภาคอุตสาหกรรมได้ งานวิจัยนี้เป็นอีกหนึ่งแนวทางเลือกที่ช่วยในการจัดการขยะพลาสติกในบ่อฝังกลบให้มีปริมาณลดน้อยลง โดยเปลี่ยนขยะมูลฝอยให้เป็นเชื้อเพลิงทดแทนที่นำไปใช้ประโยชน์ได้จริง
ปัจจุบันประเทศไทยประสบปัญหาด้านมลพิษและสิ่งแวดล้อมจากขยะมูลฝอยชุมชนที่ตกค้างอยู่ภายในสิ่งแวดล้อม จากรายงานสถานการณ์มลพิษของประเทศไทย ปี พ.ศ.2566 โดยกรมควบคุมมลพิษ พบว่า ประเทศไทยมีขยะมูลฝอยเกิดขึ้นประมาณ 26.95 ล้านตัน หรือประมาณ 73,840 ตัน/วัน กระจายตัวตามภูมิภาคต่าง ๆ ซึ่งมีปริมาณขยะพลาสติกรวมอยู่ด้วย คาดว่ามีขยะพลาสติกแบบใช้ครั้งเดียว (Single-use Plastics) ประมาณปีละ 3.03 ล้านตันของปริมาณขยะที่เกิดขึ้นทั้งหมดในประเทศ (คิดเป็นร้อยละ 11.25) เพิ่มขึ้นจากปี พ.ศ.2565 ประมาณ 0.2 ล้านตัน และมีการนำกลับไปใช้ ประโยชน์ประมาณปีละ 0.75 ล้านตัน (คิดเป็นร้อยละ 25) ส่วนที่เหลือ 2.18 ล้านตัน (คิดเป็นร้อยละ 72) จะถูกนำไปกำจัดโดยการฝังกลบรวมกับขยะมูลฝอยอื่นๆ อีก 0.09 ล้านตัน (คิดเป็นร้อยละ 3) (กรมควบคุมมลพิษ, 2566) ซึ่งการจัดการขยะพลาสติกเหล่านี้ต้องมีการอาศัยเทคโนโลยีเข้ามาช่วยในการจัดการ ซึ่งการนำไปผลิตเป็นเชื้อเพลิงทดแทนผ่านกระบวนการไพโรไลซิส (Pyrolysis) เป็นอีกกระบวนการที่สามารถจัดการขยะพลาสติกเหล่านี้ได้ โดยแผนพัฒนาพลังงานทดแทนและพลังงานทางเลือก พ.ศ. 2561 - 2580 (AEDP 2018) มีการตั้งเป้าหมายการผลิตเชื้อเพลิงทดแทนในภาคขนส่งประเภทน้ำมันไพโรไลซิส 0.53 ล้านลิตร/วัน ในปี พ.ศ.2580 จึงมีความสำคัญในการพัฒนาเทคโนโลยีดังกล่าวเพื่อการใช้งานได้จริงและแพร่หลาย ไม่ว่าจะเป็นการใช้ในภาคการขนส่งหรือแม้แต่ภาคอุตสาหกรรม (กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, 2563) ในงานวิจัยนี้จึงมีความสนใจในการศึกษาการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) โดยใช้กระบวนการไพโรไลซิส (pyrolysis) ซึ่งมีก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงให้ความร้อนในการผลิตน้ำมันจากขยะพลาสติกฝังกลบ โดยทำการเปรียบเทียบปริมาณ ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้กับการผลิตน้ำมันไพโรไลซิสจากขยะฝังกลบพลาสติกโดยใช้กระบวนการไพโรไลซิส (pyrolysis) และการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ซึ่งมีการเตรียมตัวอย่างพลาสติกฝังกลบที่นำมาใช้เป็นวัตถุดิบในการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบในรูปแบบที่แตกต่างกัน และมีการใช้ตัวเร่งปฏิกิริยา คือ ถ่านกัมมันต์ (Activated Carbon) โดยจะมีการใช้ความร้อนที่อุณหภูมิ 450 องศาเซลเซียส งานวิจัยที่ผ่านมามีการศึกษาโดยเครื่องมือวิเคราะห์ที่ใช้ศึกษาลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติก ได้แก่ ทำการวิเคราะห์ค่าความเป็นกรด-ด่าง (pH) ด้วยเครื่องมือวัดค่าความเป็นกรด-ด่าง (pH meter) การวิเคราะห์หมู่ฟังก์ชั่น (Functional group) ด้วยเครื่องวิเคราะห์หาองค์ประกอบทางโครงสร้างเคมีของสารโดยใช้ความยาวคลื่นช่วงอินฟราเรด (Fourier Transform Infrared Spectrometer) การวิเคราะห์หาค่าความร้อน (Heating Value) ด้วยเครื่องวิเคราะห์ค่าความร้อน (Bomb Calorimeter) และการวิเคราะห์เถ้า (Ash) ด้วยเตาเผาอุณหภูมิสูง จากงานวิจัยของ Noppadol Pringsakul และคณะ (2024) พบว่ากระบวนการไพโรไลซิสขยะพลาสติกที่อุณหภูมิ 450 องศาเซลเซียส โดยการใช้เตาปฏิกรณ์แบบ Batch ปริมาณน้ำมันไพโรไลซิสที่ทำการผลิตได้มาจากส่วนที่มีการหล่อเย็นด้วยน้ำมากที่สุด โดยค่าความร้อน (Heating Value) สูงสุด มีค่าเท่ากับ 40 - 45 MJ/kg และองค์ประกอบที่วิเคราะห์ได้ ประกอบด้วย ไฮโดรคาร์บอน (Hydrocarbon) กรดคาร์บอกซิลิก (Carboxylic Acid) คาร์บอนิล (Carbonyl) และสารประกอบอะโรมาติก และจากงานวิจัยของ ปรางค์ทิพย์ ฤทธิโชติ แก้วเพ็งกรอ และคณะ (2023) พบว่าการผลิตเชื้อเพลิงทดแทนจากขยะพลาสติกฝังกลบ ค่าความชื้น (Moisture Content) ของผลิตภัณฑ์ที่ผลิตได้มีค่าลดลง และมีค่าความร้อน (Heating Value) เพิ่มขึ้น เท่ากับ 18.08 – 29.41 MJ/kg และพบปริมาณของคาร์บอนที่มากเกินพอเหมาะสมที่จะนำขยะพลาสติกมาผลิตเป็นเชื้อเพลิงทดแทนได้ ในงานวิจัยนี้ศึกษาการวิเคราะห์ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้ทำการเปรียบเทียบกับลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากเทคนิคทางเคมีและความร้อน และศึกษามาตรฐานน้ำมันเตาที่ใช้ในภาคอุตสาหกรรมประเทศไทย ผลการวิเคราะห์ทดสอบจากงานวิจัยนี้สามารถเป็นข้อมูลสำหรับการนำไปศึกษาต่อถึงความเป็นไปได้ในการนำกระบวนการไพโรไลซิสโดยมีการใช้เตาปฏิกรณ์ที่มีแหล่งความร้อนแตกต่างกันมาผลิตเป็นเชื้อเพลิงทดแทนเพื่อใช้ในภาคการขนส่งหรือภาคอุตสาหกรรม และเป็นการลดจำนวนขยะพลาสติกฝังกลบให้มีปริมาณน้อยลง ลดปัญหามลพิษต่อสิ่งแวดล้อม รวมไปถึงเพิ่มมูลค่าของเสียให้สามารถนำไปใช้ประโยชน์ได้หลากหลายยิ่งขึ้น และมีความคุ้มค่าต่อการนำไปใช้งาน
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
---
คณะวิทยาศาสตร์
การพัฒนาเม็ดบีทไฮโดรเจลแบบสองชั้นสำหรับใช้เป็นเซ็นเซอร์เชิงสีในการวิเคราะห์หาปริมาณวิตามินบี6 ในผลิตภัณฑ์เครื่องดื่มเสริมวิตามิน และทำการตรวจวัดโดยใช้โทรศัพท์มือถือ โดยในการสร้างเม็ดบีทจะอาศัยแรงประจุไฟฟ้าในการทำให้เกิดเม็ดบีทไฮโดรเจลแบบสองชั้น
คณะวิทยาศาสตร์
ในงานวิจัยนี้ ทำการผลิตเมมเบรนกราฟีนออกไซด์โดยใช้กระบวนการ Phase-Inversion Method ซึ่งเป็นการเปลี่ยนสถานะของพอลิเมอร์จากของเหลวไปเป็นของแข็งผ่านการแยกเฟส ซึ่งจะทำให้เกิดโครงสร้างรูพรุนในเมมเบรน โครงสร้างของเมมเบรนที่ได้ขึ้นอยู่กับวิธีการทำให้เกิดการแยกเฟส โดยวิธี Phase-Inversion เป็นหนึ่งในกระบวนการผลิตเมมเบรนที่มีความยืดหยุ่นสูง ต้นทุนต่ำ และสามารถควบคุมโครงสร้างของเมมเบรนได้ดี เหมาะสำหรับงานด้านการบำบัดน้ำ การแยกสาร และการกรองของเหลวหรือก๊าซในระดับอุตสาหกรรม กราฟีนออกไซด์ (Graphene Oxide, GO) เป็นวัสดุที่ได้รับความสนใจอย่างมากในด้านการนำมาผลิตเมมเบรนเพื่อใช้สำหรับบำบัดน้ำและการกำจัดของเสีย เนื่องจากมีโครงสร้างเป็นชั้นบางระดับนาโนเมตร ทำให้สามารถควบคุมการซึมผ่านของโมเลกุลน้ำได้อย่างมีประสิทธิภาพ และยังมีคุณสมบัติพิเศษ เช่น - การคัดแยกโมเลกุลที่มีประสิทธิภาพสูง: สามารถกรองอนุภาคนาโน ไอออนโลหะหนัก สารอินทรีย์ และจุลินทรีย์ได้ - ความสามารถในการซึมผ่านน้ำสูง: เนื่องจากโครงสร้างของกราฟีนออกไซด์มีช่องว่างระหว่างชั้นที่เอื้อต่อการเคลื่อนที่ของโมเลกุลน้ำ - ความทนทานทางเคมีและเชิงกลสูง: ทำให้สามารถใช้งานในสภาพแวดล้อมที่รุนแรง เช่น น้ำเสียอุตสาหกรรม หรือของเสียที่มีค่า pH สูงหรือต่ำได้ - คุณสมบัติการป้องกันการเปรอะเปื้อน (Antifouling): ลดการสะสมของสารปนเปื้อนบนพื้นผิวเมมเบรน - กราฟีนออกไซด์มีความชอบน้ำสูงเนื่องจากมีปริมาณหมู่ฟังชันของออกซิเจนอย่าง (OH-) ที่พื้นผิวที่ค่อนข้างมาก ส่งผลให้เป็นเป็นสารเติ่มแต่งที่ดีสำหรับการผลิตเมมเบรนด้วยเทคนิค Phase-Inversion Method การประยุกต์ใช้เมมเบรนกราฟีนออกไซด์ในการกำจัดของเสีย - การบำบัดน้ำเสียอุตสาหกรรม เช่น การกรองโลหะหนัก (Pb2+, Cr6+, Hg2+) และสารอินทรีย์ที่เป็นพิษ - การกำจัดสารปนเปื้อนทางชีวภาพ เช่น แบคทีเรีย ไวรัส และสารพิษจากจุลินทรีย์ - การแยกเกลือออกจากน้ำทะเล (Desalination) โดยสามารถใช้แทนเมมเบรนแบบดั้งเดิมเพื่อเพิ่มอัตราการซึมผ่านของน้ำและลดพลังงานที่ใช้ - การกำจัดสารปนเปื้อนทางเภสัชกรรม เช่น ยาปฏิชีวนะและฮอร์โมนที่ตกค้างในน้ำ