งานวิจัยนี้เป็นการศึกษาการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ผ่านการคัดแยกจากหลุมฝังกลบขยะมูลฝอยอายุ 15 ปี จากองค์การบริหารส่วนจังหวัดนนทบุรี เพื่อนำมาผลิตเป็นเชื้อเพลิงทดแทนด้วยเตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ที่อุณหภูมิ 450 องศาเซลเซียส ระยะเวลา 1 ชั่วโมง 30 นาที โดยใช้ก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงในการให้ความร้อน มีการออกแบบการทดลองออกเป็น 4 สภาวะ คือ ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ผ่านการล้างและตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างและตัดลดขนาด และตัวอย่างขยะพลาสติกฝังกลบยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด และใช้ถ่านกัมมันต์เป็นตัวเร่งปฏิกิริยา พบว่าผลิตภัณฑ์ที่ได้มีทั้งหมด 3 ประเภท คือ น้ำมัน (Py-oil) ถ่าน (Char) และก๊าซ (Gas) ในปริมาณที่แตกต่างกันออกไป นอกจากนี้ยังมีการเปรียบเทียบลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบ ได้แก่ ค่าความเป็นกรด-ด่าง (pH) ค่าความร้อน (Heating Value) ค่าความชื้น (Moisture content) เถ้า (Ash) และหมู่ฟังก์ชั่น (Functional group) รวมไปถึงองค์ประกอบทางเคมี โดยใช้การอ้างอิงมาตรฐานน้ำมันเตาตามประกาศกรมธุรกิจพลังงานเป็นเกณฑ์ ผลการวิเคราะห์ ที่ได้จึงสามารถอธิบายได้ว่าน้ำมันจากการไพโรไลซิสขยะพลาสติกฝังกลบในสภาวะใดที่มีความเหมาะสมและมีความคุ้มค่ากับการนำมาผลิตเชื้อเพลิงทดแทนน้ำมันเตาที่มีการใช้ในภาคอุตสาหกรรมได้ งานวิจัยนี้เป็นอีกหนึ่งแนวทางเลือกที่ช่วยในการจัดการขยะพลาสติกในบ่อฝังกลบให้มีปริมาณลดน้อยลง โดยเปลี่ยนขยะมูลฝอยให้เป็นเชื้อเพลิงทดแทนที่นำไปใช้ประโยชน์ได้จริง
ปัจจุบันประเทศไทยประสบปัญหาด้านมลพิษและสิ่งแวดล้อมจากขยะมูลฝอยชุมชนที่ตกค้างอยู่ภายในสิ่งแวดล้อม จากรายงานสถานการณ์มลพิษของประเทศไทย ปี พ.ศ.2566 โดยกรมควบคุมมลพิษ พบว่า ประเทศไทยมีขยะมูลฝอยเกิดขึ้นประมาณ 26.95 ล้านตัน หรือประมาณ 73,840 ตัน/วัน กระจายตัวตามภูมิภาคต่าง ๆ ซึ่งมีปริมาณขยะพลาสติกรวมอยู่ด้วย คาดว่ามีขยะพลาสติกแบบใช้ครั้งเดียว (Single-use Plastics) ประมาณปีละ 3.03 ล้านตันของปริมาณขยะที่เกิดขึ้นทั้งหมดในประเทศ (คิดเป็นร้อยละ 11.25) เพิ่มขึ้นจากปี พ.ศ.2565 ประมาณ 0.2 ล้านตัน และมีการนำกลับไปใช้ ประโยชน์ประมาณปีละ 0.75 ล้านตัน (คิดเป็นร้อยละ 25) ส่วนที่เหลือ 2.18 ล้านตัน (คิดเป็นร้อยละ 72) จะถูกนำไปกำจัดโดยการฝังกลบรวมกับขยะมูลฝอยอื่นๆ อีก 0.09 ล้านตัน (คิดเป็นร้อยละ 3) (กรมควบคุมมลพิษ, 2566) ซึ่งการจัดการขยะพลาสติกเหล่านี้ต้องมีการอาศัยเทคโนโลยีเข้ามาช่วยในการจัดการ ซึ่งการนำไปผลิตเป็นเชื้อเพลิงทดแทนผ่านกระบวนการไพโรไลซิส (Pyrolysis) เป็นอีกกระบวนการที่สามารถจัดการขยะพลาสติกเหล่านี้ได้ โดยแผนพัฒนาพลังงานทดแทนและพลังงานทางเลือก พ.ศ. 2561 - 2580 (AEDP 2018) มีการตั้งเป้าหมายการผลิตเชื้อเพลิงทดแทนในภาคขนส่งประเภทน้ำมันไพโรไลซิส 0.53 ล้านลิตร/วัน ในปี พ.ศ.2580 จึงมีความสำคัญในการพัฒนาเทคโนโลยีดังกล่าวเพื่อการใช้งานได้จริงและแพร่หลาย ไม่ว่าจะเป็นการใช้ในภาคการขนส่งหรือแม้แต่ภาคอุตสาหกรรม (กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, 2563) ในงานวิจัยนี้จึงมีความสนใจในการศึกษาการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) โดยใช้กระบวนการไพโรไลซิส (pyrolysis) ซึ่งมีก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงให้ความร้อนในการผลิตน้ำมันจากขยะพลาสติกฝังกลบ โดยทำการเปรียบเทียบปริมาณ ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้กับการผลิตน้ำมันไพโรไลซิสจากขยะฝังกลบพลาสติกโดยใช้กระบวนการไพโรไลซิส (pyrolysis) และการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ซึ่งมีการเตรียมตัวอย่างพลาสติกฝังกลบที่นำมาใช้เป็นวัตถุดิบในการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบในรูปแบบที่แตกต่างกัน และมีการใช้ตัวเร่งปฏิกิริยา คือ ถ่านกัมมันต์ (Activated Carbon) โดยจะมีการใช้ความร้อนที่อุณหภูมิ 450 องศาเซลเซียส งานวิจัยที่ผ่านมามีการศึกษาโดยเครื่องมือวิเคราะห์ที่ใช้ศึกษาลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติก ได้แก่ ทำการวิเคราะห์ค่าความเป็นกรด-ด่าง (pH) ด้วยเครื่องมือวัดค่าความเป็นกรด-ด่าง (pH meter) การวิเคราะห์หมู่ฟังก์ชั่น (Functional group) ด้วยเครื่องวิเคราะห์หาองค์ประกอบทางโครงสร้างเคมีของสารโดยใช้ความยาวคลื่นช่วงอินฟราเรด (Fourier Transform Infrared Spectrometer) การวิเคราะห์หาค่าความร้อน (Heating Value) ด้วยเครื่องวิเคราะห์ค่าความร้อน (Bomb Calorimeter) และการวิเคราะห์เถ้า (Ash) ด้วยเตาเผาอุณหภูมิสูง จากงานวิจัยของ Noppadol Pringsakul และคณะ (2024) พบว่ากระบวนการไพโรไลซิสขยะพลาสติกที่อุณหภูมิ 450 องศาเซลเซียส โดยการใช้เตาปฏิกรณ์แบบ Batch ปริมาณน้ำมันไพโรไลซิสที่ทำการผลิตได้มาจากส่วนที่มีการหล่อเย็นด้วยน้ำมากที่สุด โดยค่าความร้อน (Heating Value) สูงสุด มีค่าเท่ากับ 40 - 45 MJ/kg และองค์ประกอบที่วิเคราะห์ได้ ประกอบด้วย ไฮโดรคาร์บอน (Hydrocarbon) กรดคาร์บอกซิลิก (Carboxylic Acid) คาร์บอนิล (Carbonyl) และสารประกอบอะโรมาติก และจากงานวิจัยของ ปรางค์ทิพย์ ฤทธิโชติ แก้วเพ็งกรอ และคณะ (2023) พบว่าการผลิตเชื้อเพลิงทดแทนจากขยะพลาสติกฝังกลบ ค่าความชื้น (Moisture Content) ของผลิตภัณฑ์ที่ผลิตได้มีค่าลดลง และมีค่าความร้อน (Heating Value) เพิ่มขึ้น เท่ากับ 18.08 – 29.41 MJ/kg และพบปริมาณของคาร์บอนที่มากเกินพอเหมาะสมที่จะนำขยะพลาสติกมาผลิตเป็นเชื้อเพลิงทดแทนได้ ในงานวิจัยนี้ศึกษาการวิเคราะห์ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้ทำการเปรียบเทียบกับลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากเทคนิคทางเคมีและความร้อน และศึกษามาตรฐานน้ำมันเตาที่ใช้ในภาคอุตสาหกรรมประเทศไทย ผลการวิเคราะห์ทดสอบจากงานวิจัยนี้สามารถเป็นข้อมูลสำหรับการนำไปศึกษาต่อถึงความเป็นไปได้ในการนำกระบวนการไพโรไลซิสโดยมีการใช้เตาปฏิกรณ์ที่มีแหล่งความร้อนแตกต่างกันมาผลิตเป็นเชื้อเพลิงทดแทนเพื่อใช้ในภาคการขนส่งหรือภาคอุตสาหกรรม และเป็นการลดจำนวนขยะพลาสติกฝังกลบให้มีปริมาณน้อยลง ลดปัญหามลพิษต่อสิ่งแวดล้อม รวมไปถึงเพิ่มมูลค่าของเสียให้สามารถนำไปใช้ประโยชน์ได้หลากหลายยิ่งขึ้น และมีความคุ้มค่าต่อการนำไปใช้งาน
คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
นวัตกรรมเมืองสีเขียว "Green and Smart City Innovation" การบูรณาการนวัตกรรมเพื่อสังคม (Social Innovation) และนวัตกรรมเพื่อเมืองอัจฉริยะ (Innovation for Smart City) อย่างเป็นรูปธรรมในพื้นที่ต้นแบบ จ.เชียงราย โดยมีฐานการวิจัยและพัฒนาการเรียนรู้ในพื้นที่แบบสหวิทยาการ (Interdisiplinary collabarative learning approach) โดยชุมชน เพื่อชุมชนอันมีกลไกของหน่วยงานต่างๆที่เกี่ยวข้องช่วยหนุนเสริม และขับเคลื่อน วัฒนผลิตภัณฑ์สู่่การประยุกต์ใช้ในงานออกแบบสถาปัตยกรรม Project Title : “APOLE” Cultural Product Design: The Cultural Product Design Beyond. เสาอัจฉริยะ A POLE ตอบโจทย์ SMART CITY ครอบคลุมวิถีชีวิตคนรุ่นใหม่ “การพัฒนาเมืองที่มีความประสงค์ที่จะพัฒนาคุณภาพชีวิต โดยการเพิ่มประสิทธิภาพของการให้บริการ การบริหารจัดการเมือง การลดค่าใช้จ่าย และการใช้ทรัพยากร โดยเน้นกลไกการมีส่วนร่วมของภาครัฐ ภาคเอกชน ภาคประชาชน และภาควิชาการ ภายใต้แนวคิดการพัฒนาเมืองน่าอยู่ ทันสมัย อย่างยั่งยืน ให้ประชาชนในเมืองมีคุณภาพชีวิตที่ดี โดยใช้ประโยชน์จากเทคโนโลยีและนวัตกรรมเป็นเครื่องมือ” เพื่อก้าวสู่เมืองอัจฉริยะ Smart City ในอนาคต ภาครัฐบาลใช้เทคโนโลยีมาเป็นตัวขับเคลื่อน โดยเน้นการสร้างระบบโครงสร้างพื้นฐาน (Infrastructure) ให้สอดคล้องกับสภาพความเป็นอยู่ของคนในท้องถิ่น โดยดำเนินการวางโครงสร้างพื้นฐานสื่อสารโทรคมนาคม เสาอัจฉริยะ การจัดระเบียบสายไฟฟ้าและสายสื่อสารลงดิน การติดตั้งระบบกล้องวงจรปิดอัจฉริยะ ระบบปรับปรุงคุณภาพอากาศ อุปกรณ์ Internet of Things (IoT) และระบบการควบคุมเทคโนโลยี Internet of Things (IoT) ซึ่งช่วยยกระดับคุณภาพชีวิตของผู้คนให้สามารถใช้ชีวิตอย่างมีคุณภาพมากขึ้น เสาไฟอัจฉริยะ A Pole สามารถรองรับนวัตกรรมที่ทันสมัยได้อย่างไร้ขีดจำกัดและมีประสิทธิภาพ เป็นหนึ่งสัญญาณหลักว่าเมืองกำลังพัฒนาไปสู่ยุคเทคโนโลยีอย่างเต็มรูปแบบ เพื่อพัฒนาไปสู่ความเป็นเมืองอัจฉริยะ
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
แบบจำลองเชิงแนวคิด (conceptual model) ที่ได้แรงบันดาลใจมาจากแนวคิด Form follows function และความเรียบง่ายของสถาปัตยกรรมสมัยใหม่ (Modern Architecture) โดยออกแบบเป็นผลงานสามมิติที่ลดทอนมาจากรูปทรงของเก้าอี้เพื่อสื่อถึงการใช้งาน เน้นความเรียบง่ายด้วยเส้น ระนาบ และรูปทรงเรขาคณิต แสดงถึงความงามที่เกิดจากการทำงานร่วมกันระหว่างประโยชน์ใช้สอยและรูปทรงที่เรียบง่ายดังเช่นแนวคิดของสถาปัตยกรรมสมัยใหม่
คณะเทคโนโลยีการเกษตร
สารสกัดเปลือกมังคุด (Garcinia mangostana Linn.) โดยใช้น้ำร้อน (MPE) ได้รับการพิสูจน์แล้วว่ามีศักยภาพในการต่อต้านแบคทีเรียในลูกปลากะพงขาว (Lates calcarifer) ที่เลี้ยงในน้ำจืดซึ่งติดเชื้อ Aeromonas hydrophila การศึกษาในหลอดทดลองพบว่า MPE มีความเข้มข้นต่ำสุดในการยับยั้ง (MIC) อยู่ที่ 25 ppm และความเข้มข้นต่ำสุดในการฆ่าเชื้อแบคทีเรีย (MBC) อยู่ที่ 25 ppm สำหรับ In vivo ลูกปลากะพงขาวจะถูกแช่ใน MPE ความเข้มข้นต่างๆ กันที่ 0 ppm (ควบคุม), 20 ppm, 40 ppm และ 60 ppm ตามลำดับ เป็นเวลา 7 วันด้วย A. hydrophila ผลการทดลองแสดงให้เห็นว่ากลุ่มที่ได้รับ MPE มีอัตราการรอดชีวิตสูงกว่าเมื่อเปรียบเทียบกับกลุ่มควบคุม พารามิเตอร์ทางโลหิตวิทยาแสดงให้เห็นว่ากลุ่มที่ได้รับ MPE มีระดับเม็ดเลือดแดง (RBC), เม็ดเลือดขาว (WBC) และความเข้มข้นของฮีโมโกลบิน (Hb) เพิ่มขึ้นอย่างมีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุม นอกจากนี้ พารามิเตอร์คุณภาพน้ำไม่แตกต่างกันอย่างมีนัยสำคัญ ยกเว้นความเข้มข้นของแอมโมเนีย โดยที่ MPE ความเข้มข้นของแอมโมเนียที่ 60 ppm ถือเป็นระดับต่ำสุด ผลลัพธ์ทั้งหมดสามารถบ่งชี้ได้ว่า MPE สามารถปรับปรุงศักยภาพในการต่อต้านแบคทีเรียและศักยภาพในการเพาะเลี้ยงลูกปลากะพงได้