KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

การผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบเพื่อใช้เป็นเชื้อเพลิงทดแทน

รายละเอียด

งานวิจัยนี้เป็นการศึกษาการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ผ่านการคัดแยกจากหลุมฝังกลบขยะมูลฝอยอายุ 15 ปี จากองค์การบริหารส่วนจังหวัดนนทบุรี เพื่อนำมาผลิตเป็นเชื้อเพลิงทดแทนด้วยเตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ที่อุณหภูมิ 450 องศาเซลเซียส ระยะเวลา 1 ชั่วโมง 30 นาที โดยใช้ก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงในการให้ความร้อน มีการออกแบบการทดลองออกเป็น 4 สภาวะ คือ ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ผ่านการล้างและตัดลดขนาด ตัวอย่างขยะพลาสติกฝังกลบที่ยังไม่ผ่านการล้างและตัดลดขนาด และตัวอย่างขยะพลาสติกฝังกลบยังไม่ผ่านการล้างแต่ทำการตัดลดขนาด และใช้ถ่านกัมมันต์เป็นตัวเร่งปฏิกิริยา พบว่าผลิตภัณฑ์ที่ได้มีทั้งหมด 3 ประเภท คือ น้ำมัน (Py-oil) ถ่าน (Char) และก๊าซ (Gas) ในปริมาณที่แตกต่างกันออกไป นอกจากนี้ยังมีการเปรียบเทียบลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบ ได้แก่ ค่าความเป็นกรด-ด่าง (pH) ค่าความร้อน (Heating Value) ค่าความชื้น (Moisture content) เถ้า (Ash) และหมู่ฟังก์ชั่น (Functional group) รวมไปถึงองค์ประกอบทางเคมี โดยใช้การอ้างอิงมาตรฐานน้ำมันเตาตามประกาศกรมธุรกิจพลังงานเป็นเกณฑ์ ผลการวิเคราะห์ ที่ได้จึงสามารถอธิบายได้ว่าน้ำมันจากการไพโรไลซิสขยะพลาสติกฝังกลบในสภาวะใดที่มีความเหมาะสมและมีความคุ้มค่ากับการนำมาผลิตเชื้อเพลิงทดแทนน้ำมันเตาที่มีการใช้ในภาคอุตสาหกรรมได้ งานวิจัยนี้เป็นอีกหนึ่งแนวทางเลือกที่ช่วยในการจัดการขยะพลาสติกในบ่อฝังกลบให้มีปริมาณลดน้อยลง โดยเปลี่ยนขยะมูลฝอยให้เป็นเชื้อเพลิงทดแทนที่นำไปใช้ประโยชน์ได้จริง

วัตถุประสงค์

ปัจจุบันประเทศไทยประสบปัญหาด้านมลพิษและสิ่งแวดล้อมจากขยะมูลฝอยชุมชนที่ตกค้างอยู่ภายในสิ่งแวดล้อม จากรายงานสถานการณ์มลพิษของประเทศไทย ปี พ.ศ.2566 โดยกรมควบคุมมลพิษ พบว่า ประเทศไทยมีขยะมูลฝอยเกิดขึ้นประมาณ 26.95 ล้านตัน หรือประมาณ 73,840 ตัน/วัน กระจายตัวตามภูมิภาคต่าง ๆ ซึ่งมีปริมาณขยะพลาสติกรวมอยู่ด้วย คาดว่ามีขยะพลาสติกแบบใช้ครั้งเดียว (Single-use Plastics) ประมาณปีละ 3.03 ล้านตันของปริมาณขยะที่เกิดขึ้นทั้งหมดในประเทศ (คิดเป็นร้อยละ 11.25) เพิ่มขึ้นจากปี พ.ศ.2565 ประมาณ 0.2 ล้านตัน และมีการนำกลับไปใช้ ประโยชน์ประมาณปีละ 0.75 ล้านตัน (คิดเป็นร้อยละ 25) ส่วนที่เหลือ 2.18 ล้านตัน (คิดเป็นร้อยละ 72) จะถูกนำไปกำจัดโดยการฝังกลบรวมกับขยะมูลฝอยอื่นๆ อีก 0.09 ล้านตัน (คิดเป็นร้อยละ 3) (กรมควบคุมมลพิษ, 2566) ซึ่งการจัดการขยะพลาสติกเหล่านี้ต้องมีการอาศัยเทคโนโลยีเข้ามาช่วยในการจัดการ ซึ่งการนำไปผลิตเป็นเชื้อเพลิงทดแทนผ่านกระบวนการไพโรไลซิส (Pyrolysis) เป็นอีกกระบวนการที่สามารถจัดการขยะพลาสติกเหล่านี้ได้ โดยแผนพัฒนาพลังงานทดแทนและพลังงานทางเลือก พ.ศ. 2561 - 2580 (AEDP 2018) มีการตั้งเป้าหมายการผลิตเชื้อเพลิงทดแทนในภาคขนส่งประเภทน้ำมันไพโรไลซิส 0.53 ล้านลิตร/วัน ในปี พ.ศ.2580 จึงมีความสำคัญในการพัฒนาเทคโนโลยีดังกล่าวเพื่อการใช้งานได้จริงและแพร่หลาย ไม่ว่าจะเป็นการใช้ในภาคการขนส่งหรือแม้แต่ภาคอุตสาหกรรม (กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, 2563) ในงานวิจัยนี้จึงมีความสนใจในการศึกษาการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) โดยใช้กระบวนการไพโรไลซิส (pyrolysis) ซึ่งมีก๊าซปิโตรเลียมเหลว (LPG) เป็นเชื้อเพลิงให้ความร้อนในการผลิตน้ำมันจากขยะพลาสติกฝังกลบ โดยทำการเปรียบเทียบปริมาณ ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้กับการผลิตน้ำมันไพโรไลซิสจากขยะฝังกลบพลาสติกโดยใช้กระบวนการไพโรไลซิส (pyrolysis) และการใช้เตาปฏิกรณ์แบบเบดนิ่ง (Fixed-Bed Reactor) ซึ่งมีการเตรียมตัวอย่างพลาสติกฝังกลบที่นำมาใช้เป็นวัตถุดิบในการผลิตน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบในรูปแบบที่แตกต่างกัน และมีการใช้ตัวเร่งปฏิกิริยา คือ ถ่านกัมมันต์ (Activated Carbon) โดยจะมีการใช้ความร้อนที่อุณหภูมิ 450 องศาเซลเซียส งานวิจัยที่ผ่านมามีการศึกษาโดยเครื่องมือวิเคราะห์ที่ใช้ศึกษาลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติก ได้แก่ ทำการวิเคราะห์ค่าความเป็นกรด-ด่าง (pH) ด้วยเครื่องมือวัดค่าความเป็นกรด-ด่าง (pH meter) การวิเคราะห์หมู่ฟังก์ชั่น (Functional group) ด้วยเครื่องวิเคราะห์หาองค์ประกอบทางโครงสร้างเคมีของสารโดยใช้ความยาวคลื่นช่วงอินฟราเรด (Fourier Transform Infrared Spectrometer) การวิเคราะห์หาค่าความร้อน (Heating Value) ด้วยเครื่องวิเคราะห์ค่าความร้อน (Bomb Calorimeter) และการวิเคราะห์เถ้า (Ash) ด้วยเตาเผาอุณหภูมิสูง จากงานวิจัยของ Noppadol Pringsakul และคณะ (2024) พบว่ากระบวนการไพโรไลซิสขยะพลาสติกที่อุณหภูมิ 450 องศาเซลเซียส โดยการใช้เตาปฏิกรณ์แบบ Batch ปริมาณน้ำมันไพโรไลซิสที่ทำการผลิตได้มาจากส่วนที่มีการหล่อเย็นด้วยน้ำมากที่สุด โดยค่าความร้อน (Heating Value) สูงสุด มีค่าเท่ากับ 40 - 45 MJ/kg และองค์ประกอบที่วิเคราะห์ได้ ประกอบด้วย ไฮโดรคาร์บอน (Hydrocarbon) กรดคาร์บอกซิลิก (Carboxylic Acid) คาร์บอนิล (Carbonyl) และสารประกอบอะโรมาติก และจากงานวิจัยของ ปรางค์ทิพย์ ฤทธิโชติ แก้วเพ็งกรอ และคณะ (2023) พบว่าการผลิตเชื้อเพลิงทดแทนจากขยะพลาสติกฝังกลบ ค่าความชื้น (Moisture Content) ของผลิตภัณฑ์ที่ผลิตได้มีค่าลดลง และมีค่าความร้อน (Heating Value) เพิ่มขึ้น เท่ากับ 18.08 – 29.41 MJ/kg และพบปริมาณของคาร์บอนที่มากเกินพอเหมาะสมที่จะนำขยะพลาสติกมาผลิตเป็นเชื้อเพลิงทดแทนได้ ในงานวิจัยนี้ศึกษาการวิเคราะห์ลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากขยะพลาสติกฝังกลบที่ได้ทำการเปรียบเทียบกับลักษณะและคุณภาพของน้ำมันไพโรไลซิสจากเทคนิคทางเคมีและความร้อน และศึกษามาตรฐานน้ำมันเตาที่ใช้ในภาคอุตสาหกรรมประเทศไทย ผลการวิเคราะห์ทดสอบจากงานวิจัยนี้สามารถเป็นข้อมูลสำหรับการนำไปศึกษาต่อถึงความเป็นไปได้ในการนำกระบวนการไพโรไลซิสโดยมีการใช้เตาปฏิกรณ์ที่มีแหล่งความร้อนแตกต่างกันมาผลิตเป็นเชื้อเพลิงทดแทนเพื่อใช้ในภาคการขนส่งหรือภาคอุตสาหกรรม และเป็นการลดจำนวนขยะพลาสติกฝังกลบให้มีปริมาณน้อยลง ลดปัญหามลพิษต่อสิ่งแวดล้อม รวมไปถึงเพิ่มมูลค่าของเสียให้สามารถนำไปใช้ประโยชน์ได้หลากหลายยิ่งขึ้น และมีความคุ้มค่าต่อการนำไปใช้งาน

นวัตกรรมอื่น ๆ

เครื่องทำความร้อนด้วยการเหนี่ยวนำแบบขดลวดคู่สำหรับโรงงานเครื่องประดับที่พัฒนาด้วยการวิเคราะห์ทางแม่เหล็กไฟฟ้า

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

เครื่องทำความร้อนด้วยการเหนี่ยวนำแบบขดลวดคู่สำหรับโรงงานเครื่องประดับที่พัฒนาด้วยการวิเคราะห์ทางแม่เหล็กไฟฟ้า

เครื่องทำความร้อนแบบเหนี่ยวนำ (Induction Heating Machine: IHM) เป็นอุปกรณ์สำคัญในอุตสาหกรรมเครื่องประดับ โดยใช้สนามแม่เหล็กไฟฟ้าเพื่อให้ความร้อนและเชื่อมโลหะมีค่า งานวิจัยนี้มุ่งพัฒนาเครื่องทำความร้อนแบบเหนี่ยวนำขดลวดคู่ (Dual Coil IHM) เพื่อเพิ่มประสิทธิภาพการผลิตและลดต้นทุนของโรงงานเครื่องประดับ โดยใช้ การวิเคราะห์แม่เหล็กไฟฟ้า (Electromagnetic Analysis: EMA) ผ่านซอฟต์แวร์ Ansys Maxwell กระบวนการวิจัยเริ่มจากการทดสอบเครื่อง IHM แบบขดลวดเดี่ยวในสภาวะการทำงานจริง และใช้ EMA เพื่อวิเคราะห์ความหนาแน่นฟลักซ์แม่เหล็ก (B) ที่เกิดขึ้น จากนั้นได้ออกแบบและเปรียบเทียบการทำงานของขดลวดคู่ในรูปแบบ ขนาน (Parallel) และ อนุกรม (Series) ผลการทดลองพบว่า ขดลวดอนุกรมให้ค่าฟลักซ์แม่เหล็กสูงกว่า และสามารถปรับค่ากระแส (I), ความถี่ (f), จำนวนรอบขดลวด (N) และระยะห่างขดลวด (d) เพื่อให้ได้ค่าที่เหมาะสมสำหรับการผลิต ผลการวิจัยแสดงให้เห็นว่า เครื่อง IHM ขดลวดคู่แบบอนุกรมสามารถเพิ่มกำลังการผลิตได้ 2 เท่า เมื่อเทียบกับเครื่องเดิม ทั้งนี้ เทคโนโลยี EMA ช่วยลดการทดลองเชิงกายภาพ ลดข้อผิดพลาด และเพิ่มความแม่นยำในการออกแบบเครื่องจักรอุตสาหกรรมเครื่องประดับ

ระบบให้บริการอ่านป้ายทะเบียนรถแบบอัตโนมัติ

คณะวิศวกรรมศาสตร์

ระบบให้บริการอ่านป้ายทะเบียนรถแบบอัตโนมัติ

โครงงานนี้มุ่งเน้นการพัฒนาระบบอ่านป้ายทะเบียนรถยนต์แบบอัตโนมัติ ซึ่งรองรับทั้งป้ายทะเบียนรูปแบบปกติและพิเศษของประเทศไทย โดยใช้เทคโนโลยี Machine Learning เพื่อเพิ่มประสิทธิภาพในการอ่านป้ายทะเบียน ระบบนี้สามารถรองรับข้อมูลได้ทั้งภาพนิ่งและวิดีโอ ผู้ใช้สามารถลงทะเบียนและชำระค่าบริการแบบ Subscription เพื่อนำส่งข้อมูลให้ระบบประมวลผลผ่าน RESTful API, WebSocket, และกล้อง IP ที่ลงทะเบียนกับระบบ

การพัฒนาบรรจุภัณฑ์ กลุ่มวิสาหกิจชุมชนกลุ่มกะปิคลองด่านชุมชน 3 ตำบลคลองด่าน อำเภอบางบ่อ จังหวัดสมุทรปราการ

คณะเทคโนโลยีการเกษตร

การพัฒนาบรรจุภัณฑ์ กลุ่มวิสาหกิจชุมชนกลุ่มกะปิคลองด่านชุมชน 3 ตำบลคลองด่าน อำเภอบางบ่อ จังหวัดสมุทรปราการ

การวิจัยครั้งนี้มีวัตถุประสงค์ 1) เพื่อศึกษาปัญหาความต้องการในการออกแบบบรรจุภัณฑ์กลุ่มวิสาหกิจชุมชน ฯ 2) เพื่อพัฒนาบรรจุภัณฑ์ให้กับกลุ่มวิสาหกิจชุมชน ฯ และ 3) เพื่อศึกษาความพึงพอใจต่อรูปแบบบรรจุภัณฑ์ของสมาชิกกลุ่มวิสาหกิจชุมชนกลุ่มกะปิคลองด่านชุมชน 3 ตำบลคลองด่าน อำเภอบางบ่อ จังหวัดสมุทรปราการ จำนวน 9 คน ผลการศึกษาพบว่า สภาพปัญหาของกลุ่มวิสาหกิจชุมชน ฯ นั้นขาดบรรจุภัณฑ์ที่เหมาะสมแก่การเป็นของฝากและมีความต้องการพัฒนาบรรจุภัณฑ์ให้มีลักษณะเหมาะสมแก่การเป็นของฝากโดยวัสดุที่ใช้ทำบรรจุภัณฑ์คือกระดาษ มีรูปแบบบรรจุภัณฑ์เป็นทรงสี่เหลี่ยมผืนผ้าพร้อมหูจับสำหรับพกพา สามารถพับเก็บขนส่งสะดวก และซ้อนทับเพื่อเรียงเป็นชั้นได้มีความแข็งแรงทนทาน สีบรรจุภัณฑ์ที่ใช้คือสีน้ำตาลอ่อน ส่วนสีฉลากคือสีขาว มีรายละเอียดที่ระบุในฉลากดังนี้ สูตรทำน้ำพริกกะปิ ส่วนประกอบ วันผลิตและวันหมดอายุ ความเป็นมาของกลุ่มวิสาหกิจชุมชน ฯ QR Code เบอร์โทรศัพท์ เรื่องราวสั้น ๆ ชื่อกลุ่ม สถานที่ผลิต พร้อมทั้งใช้ภาพประกอบเป็นที่ตั้งของกลุ่มวิสาหกิจชุมชน ฯ และภาพเคยแดง ผลการพัฒนาบรรจุภัณฑ์ให้กับกลุ่มวิสาหกิจชุมชน ฯ พบว่าการออกแบบบรรจุภัณฑ์ใหม่เพื่อเพิ่มความน่าเชื่อถือของสินค้า ทำให้ลูกค้าเกิดความเชื่อมั่นในตัวผลิตภัณฑ์ และความพึงพอใจต่อรูปแบบบรรจุภัณฑ์ของสมาชิกกลุ่ม ฯ พบว่าบรรจุภัณฑ์รูปแบบที่ 1 มีระดับความพึงพอใจมากที่สุด ( x ̅ = 4.57, S.D.= 0.22) โดยมีด้านสีได้ระดับความพึงพอใจมากที่สุด ( x ̅ = 4.74, S.D.= 0.06) รองลงมาคือด้านฉลากมีระดับความพึงพอใจมากที่สุด ( x ̅ = 4.69, S.D.= 0.10) น้อยที่สุดคือ ด้านคุณสมบัติระดับความพึงพอใจปานกลาง ( x ̅ = 3.83, S.D.=1.58) ตามลำดับ