KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Power Divider Integrated Circuit

Abstract

This research presents a Wilkinson power divider using a common inductor. The lumped topology uses the inherently inductive loss of the inductor as a part of the design, so the conventional resistor for high isolation can be omitted. Therefore, low-loss and high-isolation performances of the compact circuit were achieved. The proposed 2.5-GHz divider was implemented on a silicon-based integrated passive device process. Measurement of the prototype chip had a reflection coefficient below 18 dB at all ports, an insertion loss of 0.5 dB and isolation above 28 dB. The chip size is merely 0.011 wavelength x 0.019 wavelength.

Objective

ตัวกระจายสัญญาณวิลกินสัน (WPD) ในรูปแบบวงจรรวมได้รับการศึกษาอย่างกว้างขวางในช่วงความถี่ไมโครเวฟและคลื่นมิลลิเมตร วงจรสายส่งแบบรวมถูกนำมาใช้แทนสายส่งแบบกระจายในการออกแบบตัวแบ่งกำลังไฟฟ้าความถี่เดียว แบนด์คู่ แบนด์กว้าง และแบนด์กว้างพิเศษ [1-12] วงจรสายส่งแบบรวมโดยทั่วไปจะอยู่ในรูปแบบของสายส่งแบบขวามือ (หรือแบบธรรมดา) แต่สายส่งแบบซ้ายมือและแบบผสมขวา/ซ้ายมือก็พบได้ในแอปพลิเคชันต่างๆ มากมายเช่นกัน [13] ในการวิจัยนี้ เราจะเสนอวิธีการออกแบบใหม่โดยใช้ตัวเหนี่ยวนำร่วมตัวเดียวเพื่อนำไปใช้กับตัวแบ่งกำลังไฟฟ้าวิลกินสันแบบกะทัดรัด ตัวต้านทานในตัวแบ่งกำลังไฟฟ้าวิลกินสันถูกละเว้น เนื่องจากการออกแบบใช้การสูญเสียโดยธรรมชาติของตัวเหนี่ยวนำ เพื่อลดกระบวนการปิดบังตัวต้านทานจึงสามารถลดได้ในการผลิตวงจรรวม มีการเพิ่มตัวเก็บประจุเพิ่มเติมเพื่อสร้างวงจรเรโซแนนซ์สำหรับการจับคู่ ดังนั้นแม้จะมีส่วนประกอบจำนวนน้อยและมีตัวเหนี่ยวนำคุณภาพต่ำ แต่วงจรดังกล่าวก็ยังมีประสิทธิภาพดีกว่าวงจรแบบเดิม

Other Innovations

Smart Cat House

คณะวิทยาศาสตร์

Smart Cat House

This project presents the development of a "Smart Cat House" using Internet of Things (IoT) and image processing technology to facilitate and enhance the safety of cat care for owners. The infrastructure of the smart cat house consists of an ESP8266 board connected to an ESP32 CAM camera for cat monitoring, and an Arduino board that controls various sensors such as a motion sensor in the litter box, a DHT22 temperature and humidity sensor, an ultrasonic water and food level sensor, including a water supply system for cats, an automatic feeding system, and a ventilation system controlled by a DC FAN that adjusts its operation according to the measured temperature to maintain a suitable environment. There is also an IR sensor to detect the cat's entry into the litter box and an automatic sand changing system with a SERVO MOTOR. All systems are connected and controlled through the Blynk application, which can be used on mobile phones, allowing owners to monitor and care for their pets remotely. Cat detection and identification uses image processing technology from the ESP32 CAM camera in conjunction with YOLO (You Only Look Once), a high-performance object detection algorithm, to detect and distinguish between cats and people. Data from various sensors are sent to the Arduino board to control the operation of various devices in the smart cat house, such as turning lights on and off, automatically changing sand, adjusting temperature and humidity, feeding food and water at scheduled times, or ventilation. The use of a connection system via ESP8266 and the Blynk application makes it easy and convenient to control various devices. Owners can monitor and control the operation of the entire system from anywhere with internet access.

Read more
Smart system for tracking raising rate of crickets using infrared camera

คณะวิทยาศาสตร์

Smart system for tracking raising rate of crickets using infrared camera

In raising crickets for meat consumption, the growth rate and growth period of crickets are important data used to identify the number of crickets per breeding area at each age. Therefore, the researcher has an idea to create a system for monitoring the growth rate of crickets in a closed system using an infrared camera combined with computer image processing to study the growth and identify the growth period of crickets at each age in order to obtain knowledge that can be disseminated to farmers to improve the breeding process for maximum efficiency.

Read more
Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

คณะแพทยศาสตร์

Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.

Read more