KMITL Innovation Expo 2025 Logo

Photoelectrochemical sensor for salbutamol detection using molecular imprinted-polymer technique with CuO/g-C₃N₄ nanocomposite

Abstract

The photoelectrochemical detection of salbutamol, which is illicitly used as a lean meat promoter in pigs, is investigated using a molecularly imprinted polymer (MIP)-based sensor with a CuO/g-C₃N₄ nanocomposite to enhance detection performance, leveraging nanomaterials and molecular imprinting for high selectivity and sensitivity. This approach offers a promising strategy for the precise and efficient analysis of salbutamol in food samples.

Objective

ความปลอดภัยทางด้านอาหารเป็นหนึ่งปัจจัยที่มีผลสำคัญต่อสุขภาพและการดำเนินชีวิตประจำวัน เนื่องมาจากปัญหาการปนเปื้อนของสารเคมีในอาหารซึ่งก่อให้เกิดปัญหาตามมา อาทิเช่น อาการเจ็บป่วยเล็กน้อย ผลข้างเคียงหรือโรคที่เกี่ยวกับทางเดินอาหาร ไปจนถึงทำให้เสียชีวิตได้ สารซาลบูทามอลเป็นสารที่หาซื้อได้ง่ายเนื่องจากเป็นยาที่ถูกใช้กับผู้ที่เป็นโรคหอบหืดหรือโรคที่เกี่ยวกับระบบหายใจเรื้อรัง โดยสารชนิดนี้ถูกใช้ในทางที่ผิด เช่น การโดปของนักกีฬาหรือเพื่อการเร่งเนื้อแดงในสัตว์ได้

Other Innovations

Development of Credit Card Customer Churn Prediction Model

คณะเทคโนโลยีสารสนเทศ

Development of Credit Card Customer Churn Prediction Model

This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.

Read more
3D-Printed Spectrophotometer for Determination of Formaldehyde in Fresh Seafood

คณะวิศวกรรมศาสตร์

3D-Printed Spectrophotometer for Determination of Formaldehyde in Fresh Seafood

This research focuses on the development of a 3D-printed spectrophotometer. The device was designed using AutoCAD, ensuring durability, low cost, and portability. It is intended for measuring the amount of formaldehyde in fresh seafood.

Read more
Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more