KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

IOT Battery solution

Abstract

Design and Development of a Remote Battery Management System This research focuses on the design and development of a battery management system that enables remote monitoring and control, allowing users to customize battery cell properties as needed. The system is specifically designed for use with graphene battery cells and can be effectively applied to alternative energy systems for residential use.

Objective

1. เพิ่มประสิทธิภาพการจัดการพลังงาน – ระบบบริหารจัดการแบตเตอรี่ที่สามารถควบคุมและมอนิเตอร์ระยะไกลช่วยให้สามารถจัดการพลังงานได้อย่างมีประสิทธิภาพ ลดการสูญเสียพลังงาน และเพิ่มอายุการใช้งานของแบตเตอรี่ 2. รองรับเทคโนโลยีแบตเตอรี่กราฟีน – แบตเตอรี่กราฟีนมีศักยภาพสูงในการเก็บพลังงานและมีอายุการใช้งานยาวนาน โครงการนี้ช่วยทดสอบและพัฒนาการนำแบตเตอรี่กราฟีนไปใช้ในระบบพลังงานทางเลือก 3. เพิ่มความสะดวกและความปลอดภัยในการใช้งาน – การควบคุมและมอนิเตอร์แบตเตอรี่จากระยะไกลช่วยลดความเสี่ยงจากการเกิดปัญหาทางเทคนิค เช่น การชาร์จไฟเกินหรืออุณหภูมิสูงเกินไป ทำให้ระบบมีความปลอดภัยมากขึ้น 4. ส่งเสริมการพัฒนาเทคโนโลยีภายในประเทศ – โครงการนี้ช่วยสนับสนุนการพัฒนาเทคโนโลยีแบตเตอรี่และระบบบริหารจัดการพลังงานภายในประเทศ ลดการพึ่งพาเทคโนโลยีจากต่างประเทศ และเพิ่มขีดความสามารถในการแข่งขันด้านพลังงาน

Other Innovations

Fabrication of a microfluidic system to simulate skin cell systems for pharmaceutical applications.

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ

Fabrication of a microfluidic system to simulate skin cell systems for pharmaceutical applications.

The development of skin-on-a-chip models plays a crucial role in research for drug and cosmetic development. Traditional approaches often utilize two-dimensional (2D) methods that rely on culturing cells on flat surfaces, resulting in a lack of complexity in skin structure and realistic cell interactions. Moreover, traditional methods have limitations in mimicking fluid flow and nutrient circulation, which affects the accuracy of pharmaceutical testing and the prediction of drug effects. This has led to the advancement of three-dimensional (3D) skin models using new microfluidic technology, enhancing the realism of skin structure by replicating both the epidermis and dermis layers, as well as simulating fluid flow similar to physiological conditions in the human body. The design of 3D systems allows for more realistic cell arrangement and interactions, enabling better simulation of skin functions and increasing the accuracy in evaluating the effects of various substances on cell responses, including absorption, inflammation, and wound healing. Therefore, the development of three-dimensional (3D) skin models not only addresses the limitations of traditional methods but also represents a significant step forward in creating models that can be effectively applied in drug testing and pharmaceutical product development.

Read more
AfterDay Horizon

คณะเทคโนโลยีสารสนเทศ

AfterDay Horizon

The AfterDay Horizon project is a two-player survival game developed to raise awareness of the impact of climate change. It leverages Virtual Reality (VR) technology and a website as gaming platforms. In the game, players experience a world where civilization has collapsed due to global warming, forcing the remaining population to live in bunkers to avoid environmental dangers. AfterDay Horizon focuses on collaboration between the two players to complete various missions that help the bunker’s inhabitants survive as long as possible. These missions are designed to encourage teamwork and decision-making in challenging scenarios, while also raising awareness of the potential consequences of climate change if left unresolved. Preliminary testing of the game showed that players successfully completed the missions and worked well together. However, some missions were complex and time-consuming, indicating areas for improvement to enhance the overall enjoyment and gameplay experience.

Read more
A Human-engaging Robotic Interactive Assistant

คณะวิศวกรรมศาสตร์

A Human-engaging Robotic Interactive Assistant

The integration of intelligent robotic systems into human-centric environments, such as laboratories, hospitals, and educational institutions, has become increasingly important due to the growing demand for accessible and context-aware assistants. However, current solutions often lack scalability—for instance, relying on specialized personnel to repeatedly answer the same questions as administrators for specific departments—and adaptability to dynamic environments that require real-time situational responses. This study introduces a novel framework for an interactive robotic assistant (Beckerle et al. , 2017) designed to assist during laboratory tours and mitigate the challenges posed by limited human resources in providing comprehensive information to visitors. The proposed system operates through multiple modes, including standby mode and recognition mode, to ensure seamless interaction and adaptability in various contexts. In standby mode, the robot signals readiness with a smiling face animation while patrolling predefined paths or conserving energy when stationary. Advanced obstacle detection ensures safe navigation in dynamic environments. Recognition mode activates through gestures or wake words, using advanced computer vision and real-time speech recognition to identify users. Facial recognition further classifies individuals as known or unknown, providing personalized greetings or context-specific guidance to enhance user engagement. The proposed robot and its 3D design are shown in Figure 1. In interactive mode, the system integrates advanced technologies, including advanced speech recognition (ASR Whisper), natural language processing (NLP), and a large language model Ollama 3.2 (LLM Predictor, 2025), to provide a user-friendly, context-aware, and adaptable experience. Motivated by the need to engage students and promote interest in the RAI department, which receives over 1,000 visitors annually, it addresses accessibility gaps where human staff may be unavailable. With wake word detection, face and gesture recognition, and LiDAR-based obstacle detection, the robot ensures seamless communication in English, alongside safe and efficient navigation. The Retrieval-Augmented Generation (RAG) human interaction system communicates with the mobile robot, built on ROS1 Noetic, using the MQTT protocol over Ethernet. It publishes navigation goals to the move_base module in ROS, which autonomously handles navigation and obstacle avoidance. A diagram is explained in Figure 2. The framework includes a robust back-end architecture utilizing a combination of MongoDB for information storage and retrieval and a RAG mechanism (Thüs et al., 2024) to process program curriculum information in the form of PDFs. This ensures that the robot provides accurate and contextually relevant answers to user queries. Furthermore, the inclusion of smiling face animations and text-to-speech (TTS BotNoi) enhanced user engagement metrics were derived through a combination of observational studies and surveys, which highlighted significant improvements in user satisfaction and accessibility. This paper also discusses capability to operate in dynamic environments and human-centric spaces. For example, handling interruptions while navigating during a mission. The modular design allows for easy integration of additional features, such as gesture recognition and hardware upgrades, ensuring long-term scalability. However, limitations such as the need for high initial setup costs and dependency on specific hardware configurations are acknowledged. Future work will focus on enhancing the system’s adaptability to diverse languages, expanding its use cases, and exploring collaborative interactions between multiple robots. In conclusion, the proposed interactive robotic assistant represents a significant step forward in bridging the gap between human needs and technological advancements. By combining cutting-edge AI technologies with practical hardware solutions, this work offers a scalable, efficient, and user-friendly system that enhances accessibility and user engagement in human-centric spaces.

Read more