KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

IOT Battery solution

Abstract

Design and Development of a Remote Battery Management System This research focuses on the design and development of a battery management system that enables remote monitoring and control, allowing users to customize battery cell properties as needed. The system is specifically designed for use with graphene battery cells and can be effectively applied to alternative energy systems for residential use.

Objective

1. เพิ่มประสิทธิภาพการจัดการพลังงาน – ระบบบริหารจัดการแบตเตอรี่ที่สามารถควบคุมและมอนิเตอร์ระยะไกลช่วยให้สามารถจัดการพลังงานได้อย่างมีประสิทธิภาพ ลดการสูญเสียพลังงาน และเพิ่มอายุการใช้งานของแบตเตอรี่ 2. รองรับเทคโนโลยีแบตเตอรี่กราฟีน – แบตเตอรี่กราฟีนมีศักยภาพสูงในการเก็บพลังงานและมีอายุการใช้งานยาวนาน โครงการนี้ช่วยทดสอบและพัฒนาการนำแบตเตอรี่กราฟีนไปใช้ในระบบพลังงานทางเลือก 3. เพิ่มความสะดวกและความปลอดภัยในการใช้งาน – การควบคุมและมอนิเตอร์แบตเตอรี่จากระยะไกลช่วยลดความเสี่ยงจากการเกิดปัญหาทางเทคนิค เช่น การชาร์จไฟเกินหรืออุณหภูมิสูงเกินไป ทำให้ระบบมีความปลอดภัยมากขึ้น 4. ส่งเสริมการพัฒนาเทคโนโลยีภายในประเทศ – โครงการนี้ช่วยสนับสนุนการพัฒนาเทคโนโลยีแบตเตอรี่และระบบบริหารจัดการพลังงานภายในประเทศ ลดการพึ่งพาเทคโนโลยีจากต่างประเทศ และเพิ่มขีดความสามารถในการแข่งขันด้านพลังงาน

Other Innovations

Real time mosquito counter by ripple detection system

คณะวิศวกรรมศาสตร์

Real time mosquito counter by ripple detection system

The designing of mosquitoes counting system instrument is presented in this work. The mosquitoes that were counted died in order not to measure duplicate counting data. As soon as the input source counting machine can detect the mosquito, the single trigger signal is transmitted to the IOT system to interrupt the server immediately. The number of real mosquito is not transmitting to the IOT but only a signal to interrupt the server. The server records the number of the interrupt signal with real-time clock. Then the interrupt information will be further handled. The front end counting machine consist of the high voltage generate with the suitable voltage value and electrode distance for the required mosquitoes size. The low trigger pulse signals of the mosquitoes killed by high voltage are sending to the controller unit. Immediately, interrupt counting signal of the number of mosquitoes is sent to the big stream data collection on IOT system by the time stamp technique. Form the measurement results, 10 live sample mosquitoes in a limited space box to fly though the counting machine show that the count results are 100% correct count.

Read more
Effect of fructooligosaccharide supplementation on growth performance, intestinal morphology, intestinal microbiota stress index carcass quality and meat quality of broiler

คณะเทคโนโลยีการเกษตร

Effect of fructooligosaccharide supplementation on growth performance, intestinal morphology, intestinal microbiota stress index carcass quality and meat quality of broiler

Supplementing broilers with different levels of fructooligosaccharides (FOS) under stress conditions, such as higher stocking densities and recycled litter that were not a significant difference in broiler performance, carcass quality and meat quality between the FOS-supplemented groups and the control group (p>0.05). FOS supplementation improved intestinal health by increasing the villus height to crypt depth ratio Lactobacillus populations increased, and Escherichia coli decreased with FOS supplementation. The heterophil-to-lymphocyte ratio was reduced which indicated lower stress.

Read more
SOH  Estimation for  Li-ion battery

คณะวิศวกรรมศาสตร์

SOH Estimation for Li-ion battery

Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.

Read more