KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

IOT Battery solution

Abstract

Design and Development of a Remote Battery Management System This research focuses on the design and development of a battery management system that enables remote monitoring and control, allowing users to customize battery cell properties as needed. The system is specifically designed for use with graphene battery cells and can be effectively applied to alternative energy systems for residential use.

Objective

1. เพิ่มประสิทธิภาพการจัดการพลังงาน – ระบบบริหารจัดการแบตเตอรี่ที่สามารถควบคุมและมอนิเตอร์ระยะไกลช่วยให้สามารถจัดการพลังงานได้อย่างมีประสิทธิภาพ ลดการสูญเสียพลังงาน และเพิ่มอายุการใช้งานของแบตเตอรี่ 2. รองรับเทคโนโลยีแบตเตอรี่กราฟีน – แบตเตอรี่กราฟีนมีศักยภาพสูงในการเก็บพลังงานและมีอายุการใช้งานยาวนาน โครงการนี้ช่วยทดสอบและพัฒนาการนำแบตเตอรี่กราฟีนไปใช้ในระบบพลังงานทางเลือก 3. เพิ่มความสะดวกและความปลอดภัยในการใช้งาน – การควบคุมและมอนิเตอร์แบตเตอรี่จากระยะไกลช่วยลดความเสี่ยงจากการเกิดปัญหาทางเทคนิค เช่น การชาร์จไฟเกินหรืออุณหภูมิสูงเกินไป ทำให้ระบบมีความปลอดภัยมากขึ้น 4. ส่งเสริมการพัฒนาเทคโนโลยีภายในประเทศ – โครงการนี้ช่วยสนับสนุนการพัฒนาเทคโนโลยีแบตเตอรี่และระบบบริหารจัดการพลังงานภายในประเทศ ลดการพึ่งพาเทคโนโลยีจากต่างประเทศ และเพิ่มขีดความสามารถในการแข่งขันด้านพลังงาน

Other Innovations

Design of Feature "BAAC Good Worker" in Line OA BAAC Family

คณะเทคโนโลยีการเกษตร

Design of Feature "BAAC Good Worker" in Line OA BAAC Family

Currently, Thailand is facing the issue of an aging agricultural workforce and a shortage of labor. The hiring process for agricultural workers is primarily based on word-of-mouth within a limited, narrow area. This may have indirect negative effects in various aspects, such as the lack of basic selection criteria (experience, skills), budget control, and hiring processes. As a result, the idea of creating a job platform specifically for farmers was conceived.Currently, Thailand is facing the issue of an aging agricultural workforce and a shortage of labor. The hiring process for agricultural workers is primarily based on word-of-mouth within a limited, narrow area. This may have indirect negative effects in various aspects, such as the lack of basic selection criteria (experience, skills), budget control, and hiring processes. As a result, the idea of creating a job platform specifically for farmers was conceived.

Read more
Sustainable Water Hyacinth Disposal electric smart boat Innovation

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Sustainable Water Hyacinth Disposal electric smart boat Innovation

The Water Hyacinth Removal Electric Smart Boat is a small, streamlined boat capable of working in any area. Even small areas with a lot of water hyacinth volumes with advanced technology that the researcher has created and designed. The structure of the boat is made of aluminum material, is 4.80 meters long and 1.20 meters wide, and is powered by a diesel engine 14 hp. Reinforcing drive in tandem with spinning, chopping weeds and the ability to remove water hyacinths by spinning 3-5 per day with only one operator on boat. Therefore, the control and removal of water hyacinths by smart boat works better than conventional mechanization. It can work quickly and at a low cost. This water hyacinth removal electric smart boat concept will be built on the original system.

Read more
Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

คณะแพทยศาสตร์

Revolutionizing pill identification by using deep convolutional neural network based on widely-used essential household remedy drugs

This study explores the application of deep convolutional neural networks (CNNs) for accurate pill identification, addressing the limitations of traditional human-based methods. Using a dataset of 1,250 images across 10 household remedy drugs, various CNN architectures, including YOLO models, were tested under different conditions. Results showed that natural lighting was optimal for imprinted pills, while a lightbox improved detection for plain pills. The YOLOv5-tiny model demonstrated the best detection accuracy, and efficientNet_b0 achieved the highest classification performance. While the model showed strong results, its generalization is limited by sample size and drug variability. Nonetheless, this approach holds promise for enhancing medication safety and reducing errors in outpatient care.

Read more