Design and Development of a Remote Battery Management System This research focuses on the design and development of a battery management system that enables remote monitoring and control, allowing users to customize battery cell properties as needed. The system is specifically designed for use with graphene battery cells and can be effectively applied to alternative energy systems for residential use.
1. เพิ่มประสิทธิภาพการจัดการพลังงาน – ระบบบริหารจัดการแบตเตอรี่ที่สามารถควบคุมและมอนิเตอร์ระยะไกลช่วยให้สามารถจัดการพลังงานได้อย่างมีประสิทธิภาพ ลดการสูญเสียพลังงาน และเพิ่มอายุการใช้งานของแบตเตอรี่ 2. รองรับเทคโนโลยีแบตเตอรี่กราฟีน – แบตเตอรี่กราฟีนมีศักยภาพสูงในการเก็บพลังงานและมีอายุการใช้งานยาวนาน โครงการนี้ช่วยทดสอบและพัฒนาการนำแบตเตอรี่กราฟีนไปใช้ในระบบพลังงานทางเลือก 3. เพิ่มความสะดวกและความปลอดภัยในการใช้งาน – การควบคุมและมอนิเตอร์แบตเตอรี่จากระยะไกลช่วยลดความเสี่ยงจากการเกิดปัญหาทางเทคนิค เช่น การชาร์จไฟเกินหรืออุณหภูมิสูงเกินไป ทำให้ระบบมีความปลอดภัยมากขึ้น 4. ส่งเสริมการพัฒนาเทคโนโลยีภายในประเทศ – โครงการนี้ช่วยสนับสนุนการพัฒนาเทคโนโลยีแบตเตอรี่และระบบบริหารจัดการพลังงานภายในประเทศ ลดการพึ่งพาเทคโนโลยีจากต่างประเทศ และเพิ่มขีดความสามารถในการแข่งขันด้านพลังงาน

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
This project is a carbon safe haven of Bangkok, aspiring to be the prototypal gateway of the future's carbon net zero ambitions. The project aims to answer the fundamental "flaw" of the existing urban fabric, still being extremely inefficient and highly polluting. Conversely, Carbon Oasis would not only create its own energy, but look to provide its excess energy and water surplus' back to the city and its surroundings. Taking parts of the existing city and implementing new concepts to inspire a change in the urban fabric and its people.

คณะเทคโนโลยีสารสนเทศ
Facial Expression Recognition (FER) has attracted considerable attention in fields such as healthcare, customer service, and behavior analysis. However, challenges remain in developing a robust system capable of adapting to various environments and dynamic situations. In this study, the researchers introduced an Ensemble Learning approach to merge outputs from multiple models trained in specific conditions, allowing the system to retain old information while efficiently learning new data. This technique is advantageous in terms of training time and resource usage, as it reduces the need to retrain a new model entirely when faced with new conditions. Instead, new specialized models can be added to the Ensemble system with minimal resource requirements. The study explores two main approaches to Ensemble Learning: averaging outputs from dedicated models trained under specific scenarios and using Mixture of Experts (MoE), a technique that combines multiple models each specialized in different situations. Experimental results showed that Mixture of Experts (MoE) performs more effectively than the Averaging Ensemble method for emotion classification in all scenarios. The MoE system achieved an average accuracy of 84.41% on the CK+ dataset, 54.20% on Oulu-CASIA, and 61.66% on RAVDESS, surpassing the 71.64%, 44.99%, and 57.60% achieved by Averaging Ensemble in these datasets, respectively. These results demonstrate MoE’s ability to accurately select the model specialized for each specific scenario, enhancing the system’s capacity to handle more complex environments.

คณะวิทยาศาสตร์
In this paper, Vanadium dioxide (VO2) thin-film devices with two different use cases have been redesigned to introduce an asymmetrical resonant cavity structure. The structure is designed with the goal of enhancing the optical performance of the central VO2 layer and has an anti-reflection property in the cold state. The advantages and limitations of such a design are discussed.