KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

การจัดการแบตเตอรี่ แบบ IoT

รายละเอียด

การออกแบบและพัฒนาระบบบริหารจัดการแบตเตอรี่ระยะไกล งานวิจัยนี้มุ่งเน้นการออกแบบและพัฒนาระบบบริหารจัดการแบตเตอรี่ที่สามารถมอนิเตอร์และควบคุมจากระยะไกล พร้อมทั้งรองรับการกำหนดคุณสมบัติของเซลล์แบตเตอรี่ได้ตามต้องการ ระบบนี้ได้รับการออกแบบมาเป็นพิเศษสำหรับใช้งานร่วมกับเซลล์แบตเตอรี่กราฟีน และสามารถนำไปประยุกต์ใช้ในระบบพลังงานทางเลือกสำหรับที่อยู่อาศัยได้อย่างมีประสิทธิภาพ

วัตถุประสงค์

1. เพิ่มประสิทธิภาพการจัดการพลังงาน – ระบบบริหารจัดการแบตเตอรี่ที่สามารถควบคุมและมอนิเตอร์ระยะไกลช่วยให้สามารถจัดการพลังงานได้อย่างมีประสิทธิภาพ ลดการสูญเสียพลังงาน และเพิ่มอายุการใช้งานของแบตเตอรี่ 2. รองรับเทคโนโลยีแบตเตอรี่กราฟีน – แบตเตอรี่กราฟีนมีศักยภาพสูงในการเก็บพลังงานและมีอายุการใช้งานยาวนาน โครงการนี้ช่วยทดสอบและพัฒนาการนำแบตเตอรี่กราฟีนไปใช้ในระบบพลังงานทางเลือก 3. เพิ่มความสะดวกและความปลอดภัยในการใช้งาน – การควบคุมและมอนิเตอร์แบตเตอรี่จากระยะไกลช่วยลดความเสี่ยงจากการเกิดปัญหาทางเทคนิค เช่น การชาร์จไฟเกินหรืออุณหภูมิสูงเกินไป ทำให้ระบบมีความปลอดภัยมากขึ้น 4. ส่งเสริมการพัฒนาเทคโนโลยีภายในประเทศ – โครงการนี้ช่วยสนับสนุนการพัฒนาเทคโนโลยีแบตเตอรี่และระบบบริหารจัดการพลังงานภายในประเทศ ลดการพึ่งพาเทคโนโลยีจากต่างประเทศ และเพิ่มขีดความสามารถในการแข่งขันด้านพลังงาน

นวัตกรรมอื่น ๆ

การทำนายดัชนีคุณภาพอากาศด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม

คณะวิทยาศาสตร์

การทำนายดัชนีคุณภาพอากาศด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม

ปัญหาพิเศษนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบประสิทธิภาพการทำนายดัชนีคุณภาพอากาศ (AQI) ด้วยวิธีการเรียนรู้ของเครื่องแบบรวมกลุ่ม 5 วิธี ได้แก่ วิธีป่าสุ่ม วิธี XGBoost วิธี CatBoost วิธีรวมกลุ่มป่าสุ่มและ XGBoost และวิธีรวมกลุ่มป่าสุ่ม SVR และ MLP โดยใช้ชุดข้อมูลจากกรมควบคุมมลพิษกลางของประเทศอินเดีย (CPCB) ซึ่งชุดข้อมูลประกอบด้วยตัวแปรด้านมลพิษ 15 ตัวแปร และข้อมูลด้านสภาพอากาศ 9 ตัวแปร เก็บรวบรวมตั้งแต่มกราคม ค.ศ. 2021 ถึงธันวาคม ค.ศ. 2023 มีจำนวนข้อมูล 1,024,920 ค่า และวิธีการที่ใช้วัดประสิทธิภาพ 3 วิธี ได้แก่ รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root Mean Square Error : RMSE) ค่าคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error : MAE) และสัมประสิทธิ์การกำหนด (Coefficient of Determination) ผลการศึกษาพบว่าวิธีรวมกลุ่มป่าสุ่มและ XGBoost มีค่าวัดประสิทธิภาพทั้ง 3 วิธีดีที่สุด โดยมีค่า RMSE น้อยที่สุดเท่ากับ 0.1040 ค่า MAE น้อยที่สุดเท่ากับ 0.0675 และค่า มากที่สุดเท่ากับ 0.8128 แล้วทำการอธิบายผลลัพธ์จากการเรียนรู้ของเครื่องสำหรับสร้างแผนภาพด้วย SHAP ของวิธีการเรียนรู้ของเครื่องทั้ง 5 วิธี ทุกวิธีได้ข้อสรุปในทำนองเดียวกันคือตัวแปรที่มีผลกระทบต่อ ค่าทำนายโดยรวมมากที่สุด 2 อันดับแรกคือตัวแปร PM2.5 และ PM10 ตามลำดับ

คีเฟอร์นมรสมัลเบอร์รี่

คณะอุตสาหกรรมอาหาร

คีเฟอร์นมรสมัลเบอร์รี่

ขนมเจลลี่ทางเลือกใหม่ของคนรักสุขภาพ อร่อยง่าย พกพาสะดวก ดีต่อลำไส้ อุดมไปด้วยโพรไบโอติกและพรีไบโอติก มีสารต้านอนุมูลอิสระ และยังมีวิตามินที่จำเป็นต่อร่างกาย เหมาะกับคนที่รัสุขภาพ และผู้ที่แพ้แลคโตสสามารถรับประทานได้ ไม่ใส่แต่งสี และแต่งกลิ่น

การวิเคราะห์เซลล์เม็ดเลือดด้วย AI

คณะวิศวกรรมศาสตร์

การวิเคราะห์เซลล์เม็ดเลือดด้วย AI

โครงการนี้จัดทำขึ้นเพื่อตอบสนองต่อปัญหาในทางการแพทย์ที่เกี่ยวข้องกับกระบวนการนับและแยกเซลล์เม็ดเลือดจากตัวอย่าง ซึ่งเป็นกระบวนการที่ต้องใช้เวลาและความแม่นยำสูง เพื่อช่วยลดภาระของบุคลากรทางการแพทย์ ทางผู้จัดทำจึงได้พัฒนา แพลตฟอร์มและระบบปัญญาประดิษฐ์ (AI) ที่สามารถจำแนกประเภทและนับจำนวนเซลล์จากภาพตัวอย่างได้โดยอัตโนมัติ ระบบนี้ถูกออกแบบมาเพื่อช่วยผ่อนแรงนักเทคนิคการแพทย์ให้สามารถทำงานได้อย่างรวดเร็วและแม่นยำยิ่งขึ้น ลดระยะเวลาในการตรวจวิเคราะห์ อีกทั้งยังเป็นการส่งเสริมการพัฒนาเทคโนโลยีในวงการแพทย์ เพื่อให้สามารถรองรับการใช้งานในระดับห้องเรียน ห้องปฏิบัติการจนถึงโรงพยาบาลได้อย่างมีประสิทธิภาพ