ด้วยการพัฒนาของเทคโนโลยีทางด้านอวกาศทำให้การสำรวจท้องฟ้าโดยใช้กล้องโทรทรรศน์ที่มีมุมมองกว้างขยายขอบเขตของข้อมูลใหม่ๆ สำหรับการวิจัยดาราศาสตร์โดเมนเวลามากยิ่งขึ้น ทำให้การวิเคราะห์ข้อมูลแบบดั้งเดิมไม่สามารถตอบสนองต่อข้อมูลได้อย่างรวดเร็วและแม่นยำเพียงพอต่อปริมาณข้อมูลที่เพิ่มขึ้นอย่างต่อเนื่อง ดังนั้น การจำแนกประเภทของข้อมูลซีรีส์เวลาอย่างกราฟแสงจึงเป็นความท้าทายอย่างมากในยุคที่ข้อมูลมีขนาดใหญ่ ในปัจจุบันการวิเคราะห์กราฟแสงจึงจำเป็นต้องใช้เทคนิคการเรียนรู้ของเครื่องเข้ามาช่วยในการวิเคราะห์ คัดกรองข้อมูลอันมหาศาลอย่างหลีกเลี่ยงไม่ได้ โดยอัลกอริทึมการเรียนรู้ของเครื่องแบ่งออกได้ 2 ประเภท คือ แบบตื้นและแบบลึก นักวิจัยหลายๆ ท่านได้นำเสนอวิธีการและการพัฒนาอัลกอริทึมหลากหลายรูปแบบสำหรับการจำแนกประเภทของกราฟแสง ซึ่งในงานนี้เราได้ทำการทดลองใช้ Support Vector Machine (SVM) และ XGBoost ซึ่งเป็นอัลกอริทึมการเรียนรู้ของเครื่องประเภทแบบตื้น และ 1D-CNN และ Long Short-Term Memory (LSTM) ซึ่งเป็นอัลกอริทึมการเรียนรู้เชิงลึกเป็นอีกหนึ่งสาขาของการเรียนรู้ของเครื่องที่เป็นประเภทแบบลึก เพื่อใช้ในการจำแนกประเภทของดาวแปรแสง โดยข้อมูลที่ใช้ในการอบรบและทดสอบ คือ ข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) เป็นข้อมูลของดาวแปรแสง โดยอยู่ในพื้นที่ Large Magellanic Cloud (LMC) ที่มีการแบ่งได้ 5 คลาสหลักส่วนใหญ่ (Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars และ Long-period variables) ผลลัพธ์แสดงให้เห็นถึงการวิเคราะห์ประสิทธิภาพของการเรียนรู้ของเครื่องแต่ละประเภทที่ใช้กับข้อมูลกราฟแสง อีกทั้งยังชี้ให้เห็นถึงความแม่นยำและค่าสถิติต่างๆ ของการเรียนรู้ของเครื่องที่ใช้ในทดลอง
ในงานนี้เราได้เสนอการใช้อัลกอริทึมการเรียนรู้ของเครื่องที่ทำการแบ่งอัลกอริทึมได้เป็น 2 ประเภท คือ แบบตื้นและแบบลึกมาทดสอบประสิทธิภาพโดยแบบตื้นมีมีอัลกอริทึม Support Vector Machine (SVM) และ XGBoost แบบลึกมีอัลกอริทึม 1D-CNN และ Long Short-Term Memory (LSTM) เราพิจารณาข้อมูลการสังเกตที่ได้จากฐานข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) ที่เป็นดาวแปรแสงในพื้นที่ Large Magellanic Cloud (LMC) ด้วยกล้องโทรทรรศน์ขนาด 1.3-m Warsaw ที่ติดตั้งที่หอดูดาวลาสคัมปานัส ประเทศชิลี ข้อมูลนี้ประกอบด้วยการสังเกตดาวแปรแสงมากกว่าหนึ่งแสนครั้งโดยพิจารณาจากกราฟแสง และใช้ข้อมูลสถิติต่างๆ เช่น Accuracy, Precision, Recall, F1-score, AUG, mPa, mcc และ kappa ซึ่งงานวิจัยนี้มีจุดมุ่งหมายเพื่อที่จะทดสอบประสิทธิภาพในการจำแนกประเภทของดาวแปรแสงโดยใช้ข้อมูลการวิเคราะห์ light curve ด้วยเทคนิคการเรียนรู้ของเครื่องทั้งสองประเภท เพื่อให้เห็นถึงความเข้าใจในลักษณะและพฤติกรรมของดาวแปรแสง ซึ่งใช้ในประโยชน์ต่างๆ เช่น ความรู้ในด้านดาราศาสตร์ฟิสิกส์หรือการค้นพบดาวเคราะห์ดวงใหม่ๆ และการป้องกันภัยจากดาวแปรแสงมีอาจจะมีผลกระทบต่อโลก อีกทั้งในเรื่องการประหยัดเวลาและทรัพยากรในการที่จะจำแนกประเภทดาวแปรแสงอย่างมีระบบและมีประสิทธิภาพ
คณะวิศวกรรมศาสตร์
โครงงานนี้มีวัตถุประสงค์เพื่อนำเสนอแนวทางการออกแบบห้องแปรรูปเครื่องในแดงสำหรับโรงงานแปรรูปสุกร ที่มีการแปรรูปสุกร 500 ตัวต่อวันหรือ 80 ตัวต่อชั่วโมง น้ำหนักสุกรเฉลี่ยประมาณ 105 กิโลกรัม/ตัว มีเครื่องในแดงอยู่ร้อยละ 3.47 เพื่อทำการแยกชิ้นส่วน ตับ ขั้วตับ หัวใจ ปอด ม้ามและไต ตามต้องการ และทำการแช่ในน้ำเย็นเพื่อลดอุณหภูมิให้ต่ำกว่า 7 องศาเซลเซียส แล้วจึงนำบรรจุและปิดผนึก การคัดแยกใช้จำนวนชิ้นและน้ำหนักเป็นเกณฑ์ในการคัดแยกตามแต่ชนิด เวลาในการแปรรูป การแช่น้ำเย็นและการบรรจุมีความแตกต่างกันตามชนิดและขนาดสินค้า ข้อมูลในการออกแบบได้จากการเก็บข้อมูลในสายการผลิตปัจจุบันและข้อมูลอ้างอิงตามมาตรฐานต่าง ๆ ออกแบบห้องแปรรูปตามหลักการวางผังโรงงานอย่างเป็นระบบ (Systematic Layout Planning: SLP) วิเคราะห์ความสัมพันธ์ของกิจกรรมภายในห้อง จัดทำแผนผังสำหรับการกำหนดพื้นที่ใช้งาน คำนวณขนาดอุปกรณ์และจำนวนผู้ปฏิบัติงานที่จำเป็นต่อการใช้งาน พื้นที่ของห้องเครื่องในแดงถูกออกแบบมีขนาด 56 ตารางเมตร หลังจากออกแบบแผนผังได้มีการจำลองห้องในรูปแบบ 3 มิติด้วยโปรแกรม SketchUp 2024 พร้อมทั้งจำลองและวิเคราะห์การทำงานในห้องด้วยโปรแกรม Flexsim 2024
คณะอุตสาหกรรมอาหาร
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการหมักร่วม (Co-fermentation) ระหว่างแบคทีเรียกรดแลคติก (Lactic Acid Bacteria, LAB) และยีสต์ Saccharomyces cerevisiae ในการผลิตเบียร์เปรี้ยว (Sour Beer) โดยมุ่งเน้นผลกระทบของการหมักร่วมต่อคุณภาพของผลิตภัณฑ์ ได้แก่ ค่า pH ปริมาณกรดอินทรีย์ ปริมาณน้ำตาล และคุณลักษณะทางประสาทสัมผัส ในการทดลอง ใช้แบคทีเรียกรดแลคติกสายพันธุ์ที่คัดเลือก และยีสต์ S. cerevisiae ในสภาวะการหมักที่ควบคุม อัตราส่วนของจุลินทรีย์ถูกปรับให้เหมาะสมเพื่อส่งเสริมการเจริญเติบโตและการสร้างสารสำคัญ ผลการทดลองพบว่า การหมักร่วมสามารถลดค่า pH ได้อย่างมีนัยสำคัญเมื่อเทียบกับการหมักด้วยยีสต์เพียงอย่างเดียว นอกจากนี้ ยังมีการเพิ่มขึ้นของกรดแลคติกเนื่องจากการใช้น้ำตาลของเชื้อLAB ซึ่งส่งผลต่อรสชาติที่เป็นเอกลักษณ์ของเบียร์เปรี้ยว
คณะแพทยศาสตร์
โรคปวดศรีษะไมเกรน เป็นโรคที่พบได้บ่อย และ ส่งผลต่อการทำงาน การดำเนินชีวิตประจำวันของผู้ป่วยเป็นอย่างมาก โรคปวดศรีษะไมเกรนแบ่งออกเป็น 4 ระยะ ได้แก่ ระยะอาการเตือน (Prodrome หรือ premonitory) ระยะออร่า (Aura) ระยะปวดศีรษะ (Headache) และระยะฟื้นตัว (Postdrome) โดยระยะอาการเตือน (premonitory stage) สามารถเกิดขึ้นก่อนการปวดศีรษะได้นานถึง 72 ชั่วโมง และถือเป็นช่วงเวลาสำคัญอย่างมาก เนื่องจากมีการศึกษาพบว่าการใช้ยาในระยะนี้สามารถช่วยป้องกันการปวดศรีษะได้ อย่างไรก็ตาม อาการในระยะนี้มักไม่จำเพาะเจาะจง ทำให้ผู้ป่วยไม่สามารถรู้ได้แน่ชัดว่ากำลังอยู่ในระยะอาการเตือนของไมเกรนหรือไม่ โปรตีน Calcitonin gene-related peptide (cGRP) เป็นโมเลกุลสำคัญที่มีบทบาทในการเกิดไมเกรน โดยมีงานวิจัยพบว่าระดับ cGRP ในน้ำลายเพิ่มขึ้นในช่วงระยะอาการเตือน (premonitory stage) การศึกษานี้มีเป้าหมายเพื่อพัฒนาและประเมินชุดทดสอบแบบ Lateral Flow Immunoassay สำหรับตรวจหาระดับ cGRP ในน้ำลายของผู้ป่วยไมเกรนในระยะอาการเตือน ซึ่งอาจเป็นเครื่องมือช่วยยืนยัน เพื่อให้ผู้ป่วยมั่นใจ และ ใช้ยาก่อนที่จะมีอาการปวดหัว