ด้วยการพัฒนาของเทคโนโลยีทางด้านอวกาศทำให้การสำรวจท้องฟ้าโดยใช้กล้องโทรทรรศน์ที่มีมุมมองกว้างขยายขอบเขตของข้อมูลใหม่ๆ สำหรับการวิจัยดาราศาสตร์โดเมนเวลามากยิ่งขึ้น ทำให้การวิเคราะห์ข้อมูลแบบดั้งเดิมไม่สามารถตอบสนองต่อข้อมูลได้อย่างรวดเร็วและแม่นยำเพียงพอต่อปริมาณข้อมูลที่เพิ่มขึ้นอย่างต่อเนื่อง ดังนั้น การจำแนกประเภทของข้อมูลซีรีส์เวลาอย่างกราฟแสงจึงเป็นความท้าทายอย่างมากในยุคที่ข้อมูลมีขนาดใหญ่ ในปัจจุบันการวิเคราะห์กราฟแสงจึงจำเป็นต้องใช้เทคนิคการเรียนรู้ของเครื่องเข้ามาช่วยในการวิเคราะห์ คัดกรองข้อมูลอันมหาศาลอย่างหลีกเลี่ยงไม่ได้ โดยอัลกอริทึมการเรียนรู้ของเครื่องแบ่งออกได้ 2 ประเภท คือ แบบตื้นและแบบลึก นักวิจัยหลายๆ ท่านได้นำเสนอวิธีการและการพัฒนาอัลกอริทึมหลากหลายรูปแบบสำหรับการจำแนกประเภทของกราฟแสง ซึ่งในงานนี้เราได้ทำการทดลองใช้ Support Vector Machine (SVM) และ XGBoost ซึ่งเป็นอัลกอริทึมการเรียนรู้ของเครื่องประเภทแบบตื้น และ 1D-CNN และ Long Short-Term Memory (LSTM) ซึ่งเป็นอัลกอริทึมการเรียนรู้เชิงลึกเป็นอีกหนึ่งสาขาของการเรียนรู้ของเครื่องที่เป็นประเภทแบบลึก เพื่อใช้ในการจำแนกประเภทของดาวแปรแสง โดยข้อมูลที่ใช้ในการอบรบและทดสอบ คือ ข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) เป็นข้อมูลของดาวแปรแสง โดยอยู่ในพื้นที่ Large Magellanic Cloud (LMC) ที่มีการแบ่งได้ 5 คลาสหลักส่วนใหญ่ (Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars และ Long-period variables) ผลลัพธ์แสดงให้เห็นถึงการวิเคราะห์ประสิทธิภาพของการเรียนรู้ของเครื่องแต่ละประเภทที่ใช้กับข้อมูลกราฟแสง อีกทั้งยังชี้ให้เห็นถึงความแม่นยำและค่าสถิติต่างๆ ของการเรียนรู้ของเครื่องที่ใช้ในทดลอง
ในงานนี้เราได้เสนอการใช้อัลกอริทึมการเรียนรู้ของเครื่องที่ทำการแบ่งอัลกอริทึมได้เป็น 2 ประเภท คือ แบบตื้นและแบบลึกมาทดสอบประสิทธิภาพโดยแบบตื้นมีมีอัลกอริทึม Support Vector Machine (SVM) และ XGBoost แบบลึกมีอัลกอริทึม 1D-CNN และ Long Short-Term Memory (LSTM) เราพิจารณาข้อมูลการสังเกตที่ได้จากฐานข้อมูล Optical Gravitational Lensing Experiment-III (OGLE-III) ที่เป็นดาวแปรแสงในพื้นที่ Large Magellanic Cloud (LMC) ด้วยกล้องโทรทรรศน์ขนาด 1.3-m Warsaw ที่ติดตั้งที่หอดูดาวลาสคัมปานัส ประเทศชิลี ข้อมูลนี้ประกอบด้วยการสังเกตดาวแปรแสงมากกว่าหนึ่งแสนครั้งโดยพิจารณาจากกราฟแสง และใช้ข้อมูลสถิติต่างๆ เช่น Accuracy, Precision, Recall, F1-score, AUG, mPa, mcc และ kappa ซึ่งงานวิจัยนี้มีจุดมุ่งหมายเพื่อที่จะทดสอบประสิทธิภาพในการจำแนกประเภทของดาวแปรแสงโดยใช้ข้อมูลการวิเคราะห์ light curve ด้วยเทคนิคการเรียนรู้ของเครื่องทั้งสองประเภท เพื่อให้เห็นถึงความเข้าใจในลักษณะและพฤติกรรมของดาวแปรแสง ซึ่งใช้ในประโยชน์ต่างๆ เช่น ความรู้ในด้านดาราศาสตร์ฟิสิกส์หรือการค้นพบดาวเคราะห์ดวงใหม่ๆ และการป้องกันภัยจากดาวแปรแสงมีอาจจะมีผลกระทบต่อโลก อีกทั้งในเรื่องการประหยัดเวลาและทรัพยากรในการที่จะจำแนกประเภทดาวแปรแสงอย่างมีระบบและมีประสิทธิภาพ

คณะเทคโนโลยีการเกษตร
โครงงานนี้นำเสนอวิธีการออกแบบและการจัดการพื้นที่เกษตร จังหวัดกาญจนบุรี พื้นที่กรณีศึกษาตั้งอยู่ที่ ตำบล วังด้ง อำเภอ เมืองกาญจนบุรี จังหวัด กาญจนบุรี พื้นที่ขนาดประมาณ 18 ไร่ เนื่องจากผู้ใช้งานมีความต้องการใช้ชีวิตเรียบง่ายในต่างจังหวัดกับบรรยากาศที่รายล้อมไปด้วยธรรมชาติจึงออกแบบให้สอดคล้องกับแนวทางการใช้ชีวิตที่เรียบง่ายและยั่งยืน โดยมีการจัดสรรพื้นที่อย่างเป็นระบบ เพื่อให้เกิดประโยชน์สูงสุดทั้งในด้านการดำรงชีวิตและการพัฒนาอุตสาหกรรมเกษตร โซนปลูกผักและผลไม้ถูกวางแผนให้เหมาะสมกับสภาพภูมิอากาศและชนิดของพืช เพื่อให้ได้ผลผลิตที่มีคุณภาพและสามารถนำไปใช้ประโยชน์ได้อย่างต่อเนื่อง ขณะที่โซนเลี้ยงสัตว์ได้รับการจัดวางให้เป็นสัดส่วนแนวทางนี้ไม่เพียงแต่ช่วยสร้างความมั่นคงทางอาหารและรายได้ แต่ยังเป็นรูปแบบของการใช้ชีวิตที่เกื้อกูลธรรมชาติ ลดผลกระทบต่อสิ่งแวดล้อม และสามารถต่อยอดไปสู่การพัฒนาอุตสาหกรรมเกษตรที่มีประสิทธิภาพและเป็นมิตรกับระบบนิเวศในระยะยาว มีการเก็บรายละเอียดของการวงตำแหน่งต่างๆเพื่อให้สอดคล้องกับทิศทางลมและแสงของพื้นที่ รวมถึงการเขียนแบบที่ผ่านกระบวนการออกแบบและตรวจแบบอย่างสม่ำเสมอเพื่อผลลัพธ์ที่ดีต่อพื้นที่ใช้งาน

วิทยาเขตชุมพรเขตรอุดมศักดิ์
งานวิจัยนี้เป็นการออกแบบและสร้างเครื่องต้นแบบระบบปัญญาประดิษฐ์ของสรรพสิ่งสำหรับติดตามและควบคุมการให้น้ำพืชโดยใช้ข้อมูลสภาพอากาศ โดยระบบประกอบไป 4 ส่วนสำคัญ คือ ส่วนที่ 1 สถานีตรวจวัดสภาพอากาศ (Weather Station) ประกอบไปด้วยเซ็นเซอร์ต่าง ๆ เช่น อุณหภูมิอากาศ ความชื้นสัมพัทธ์ ความเร็วลม และความยาวนานของแสง เป็นต้น ส่วนที่ 2 หน่วยประมวลผล (Controller Unit) โดยจะมีการติดตั้งอัลกอริทึมหรือแบบจำลองการเรียนรู้ของเครื่องเพื่อใช้ประเมินค่าการคายระเหยน้ำของพืชอ้างอิง (ETo) และจะใช้คำนวณร่วมกับค่าสัมประสิทธิ์การใช้น้ำของพืชนั้น ๆ (Crop Coefficient: Kc) และข้อมูล อื่น ๆ เกี่ยวกับพืชนั้น ๆ เพื่อประเมินปริมาณการใช้น้ำตามความต้องการของพืชโดยอัตโนมัติ ส่วนที่ 3 ส่วนติดต่อผู้ใช้งานและหน้าจอแสดงผล (User Interface (UI) and Display) เป็นส่วนที่ให้เกษตรกรหรือผู้ใช้งานสามารถป้อนข้อมูลเกี่ยวกับชนิดของพืช ชนิดของดินที่ปลูก ประเภท ของระบบการให้น้ำ จำนวนหัวจ่ายน้ำ ระยะปลูก และช่วงการเจริญเติบโตของพืช เป็นต้น และส่วนที่ 4 หน่วยควบคุมและหัวจ่ายน้ำ (Irrigation Unit)

คณะวิศวกรรมศาสตร์
ชุดจำลองระบบปลูกผักไฮโดรโปนิกส์ระบบน้ำไหลขนาดเล็กที่มีการมอนิเตอร์ ดูแลและควบคุมปริมาณปุ๋ยในระบบ