Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.
กระบวนการสรรหาพนักงานมีความซับซ้อนและใช้เวลานาน เนื่องจากองค์กรต้องจัดการข้อมูลจากหลายช่องทาง เช่น เว็บไซต์สมัครงาน หน้าเว็บของบริษัท และการแนะนำจากพนักงานภายใน ซึ่งแต่ละช่องทางอาจมีแบบฟอร์มสมัครงานที่แตกต่างกัน ทำให้การรวมรวมข้อมูลผู้สมัครลงในฐานข้อมูลเดียวกันเกิดข้อผิดพลาดและซ้ำซ้อน เนื่องจากการกรอกข้อมูลยังต้องดำเนินการโดยฝ่ายทรัพยากรบุคคลด้วยตนเอง ส่งผลให้เกิดความล่าช้าในการวิเคราะห์ข้อมูล และทำให้การพิจารณาคุณสมบัติเบื้องต้นของผู้สมัครไม่มีประสิทธิภาพเพียงพอ อีกทั้ง ระบบเดิมที่ใช้ Google Sheets ในการจัดการข้อมูลมีข้อจำกัดในการจัดการข้อมูลขนาดใหญ่ ส่งผลให้เกิดความล่าช้าและขาดประสิทธิภาพในการแสดงผลข้อมูลของผู้สมัคร ส่งผลต่อการตัดสินใจในการคัดเลือกบุคลากรที่เหมาะสมกับตำแหน่งงาน จากปัญหาดังกล่าว คณะผู้วิจัยจึงได้พัฒนาเว็บแอปพลิเคชันอัจฉริยะที่สามารถรวมข้อมูลจากหลายแหล่งให้อยู่ในระบบเดียวกัน ลดความซ้ำซ้อน และลดโอกาสเกิดข้อผิดพลาดของมนุษย์ โดยใช้เทคโนโลยี AI และ Machine Learning ในการวิเคราะห์และให้คะแนนความเหมาะสมของผู้สมัครอย่างแม่นยำ พร้อมทั้งพัฒนาแดชบอร์ดที่ช่วยให้ฝ่ายทรัพยากรบุคคลสามารถดูข้อมูล วิเคราะห์ และตัดสินใจคัดเลือกบุคลากรได้รวดเร็วยิ่งขึ้น ทำให้กระบวนการสรรหาพนักงานมีประสิทธิภาพและลดภาระงานของฝ่ายสรรหาได้อย่างมีนัยสำคัญ
คณะวิทยาศาสตร์
Photocatalytic materials decorated with bi-metallic nanoparticles (Bi-Metallic NPs/ photocatalyst) was synthesized for the degradation of aflatoxin B1. Bi-metallic NPs/ photocatalyst were synthesized by ultrasonic irradiation. The as-synthesized was characterized the chemical characteristics by the transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FT-IR), zeta potential analyzer, and UV-visible spectrophotometer. Bi-metallic NPs/photocatalyst was used to evaluate the degradation efficiency of AFB1 in household wastewater under visible light. The degradation process was analyzed using high-performance liquid chromatography (HPLC) at a wavelength of 365 nm, revealing that AFB1 was completely degraded 100% within 2 minutes. This superior performance is attributed to its highly porous structure, increased specific surface area, and reduced electron-hole recombination rate, which demonstrate that the developed nanomaterial has successfully achieved AFB1 degradation.
คณะวิศวกรรมศาสตร์
This project focuses on the development of an automatic license plate recognition system that supports both standard and special license plates in Thailand. By utilizing Machine Learning technology, the system enhances the efficiency of license plate reading. It can process data from both images and videos. Users can register and subscribe to the service, allowing them to send data for processing through RESTful API, WebSocket, and registered IP cameras.
คณะอุตสาหกรรมอาหาร
The growing interest in antioxidant-rich foods is driven by their potential to reduce the risk of chronic diseases such as cancer, cardiovascular conditions, and cellular degeneration. Ginger (Zingiber officinale), banana inflorescence (Musa paradisiaca L.), and roselle (Hibiscus sabdariffa L.) are herbal plants known for their high phenolic content, a crucial component in antioxidant activity. However, the bioactive compounds in these plants are often unstable when exposed to light, temperature, and oxygen, leading to a reduction in their efficacy. This study aims to investigate the optimal ratio of ginger, banana inflorescence, and roselle for encapsulation in liposomes—a technique designed to enhance the stability of bioactive compounds and improve their delivery efficacy. The research evaluates the antioxidant activity of the extracts using DPPH, ABTS, and FRAP methods, alongside total phenolic content (TPC) measurement. The most effective ratio for antioxidant activity will be selected for liposomal encapsulation, employing phospholipids as key structural components. The encapsulation efficiency (EE%) will be calculated to assess the effectiveness of the liposomal delivery system. The findings are expected to identify the optimal combination of ginger, banana inflorescence, and roselle that maximizes antioxidant potency and enhances the stability of bioactive compounds through liposomal encapsulation. This approach offers a promising strategy for developing herbal health supplements that maintain their biological properties over time.