Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.
กระบวนการสรรหาพนักงานมีความซับซ้อนและใช้เวลานาน เนื่องจากองค์กรต้องจัดการข้อมูลจากหลายช่องทาง เช่น เว็บไซต์สมัครงาน หน้าเว็บของบริษัท และการแนะนำจากพนักงานภายใน ซึ่งแต่ละช่องทางอาจมีแบบฟอร์มสมัครงานที่แตกต่างกัน ทำให้การรวมรวมข้อมูลผู้สมัครลงในฐานข้อมูลเดียวกันเกิดข้อผิดพลาดและซ้ำซ้อน เนื่องจากการกรอกข้อมูลยังต้องดำเนินการโดยฝ่ายทรัพยากรบุคคลด้วยตนเอง ส่งผลให้เกิดความล่าช้าในการวิเคราะห์ข้อมูล และทำให้การพิจารณาคุณสมบัติเบื้องต้นของผู้สมัครไม่มีประสิทธิภาพเพียงพอ อีกทั้ง ระบบเดิมที่ใช้ Google Sheets ในการจัดการข้อมูลมีข้อจำกัดในการจัดการข้อมูลขนาดใหญ่ ส่งผลให้เกิดความล่าช้าและขาดประสิทธิภาพในการแสดงผลข้อมูลของผู้สมัคร ส่งผลต่อการตัดสินใจในการคัดเลือกบุคลากรที่เหมาะสมกับตำแหน่งงาน จากปัญหาดังกล่าว คณะผู้วิจัยจึงได้พัฒนาเว็บแอปพลิเคชันอัจฉริยะที่สามารถรวมข้อมูลจากหลายแหล่งให้อยู่ในระบบเดียวกัน ลดความซ้ำซ้อน และลดโอกาสเกิดข้อผิดพลาดของมนุษย์ โดยใช้เทคโนโลยี AI และ Machine Learning ในการวิเคราะห์และให้คะแนนความเหมาะสมของผู้สมัครอย่างแม่นยำ พร้อมทั้งพัฒนาแดชบอร์ดที่ช่วยให้ฝ่ายทรัพยากรบุคคลสามารถดูข้อมูล วิเคราะห์ และตัดสินใจคัดเลือกบุคลากรได้รวดเร็วยิ่งขึ้น ทำให้กระบวนการสรรหาพนักงานมีประสิทธิภาพและลดภาระงานของฝ่ายสรรหาได้อย่างมีนัยสำคัญ

คณะเทคโนโลยีสารสนเทศ
This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
A child manikin for Cardiopulmonary Resuscitation (CPR) training includes the trachea mechanism, neck mechanism, lung mechanism, heart pump mechanism, artificial skin, and sensor system. All components work together to function similar to a real child. It can be used to practice heart pumping and resuscitation. The manikin has been designed and verified by resuscitation experts. It has a system to evaluate the accuracy of the training and display the results on the computer for real-time monitoring.

คณะเทคโนโลยีการเกษตร
-