Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.
กระบวนการสรรหาพนักงานมีความซับซ้อนและใช้เวลานาน เนื่องจากองค์กรต้องจัดการข้อมูลจากหลายช่องทาง เช่น เว็บไซต์สมัครงาน หน้าเว็บของบริษัท และการแนะนำจากพนักงานภายใน ซึ่งแต่ละช่องทางอาจมีแบบฟอร์มสมัครงานที่แตกต่างกัน ทำให้การรวมรวมข้อมูลผู้สมัครลงในฐานข้อมูลเดียวกันเกิดข้อผิดพลาดและซ้ำซ้อน เนื่องจากการกรอกข้อมูลยังต้องดำเนินการโดยฝ่ายทรัพยากรบุคคลด้วยตนเอง ส่งผลให้เกิดความล่าช้าในการวิเคราะห์ข้อมูล และทำให้การพิจารณาคุณสมบัติเบื้องต้นของผู้สมัครไม่มีประสิทธิภาพเพียงพอ อีกทั้ง ระบบเดิมที่ใช้ Google Sheets ในการจัดการข้อมูลมีข้อจำกัดในการจัดการข้อมูลขนาดใหญ่ ส่งผลให้เกิดความล่าช้าและขาดประสิทธิภาพในการแสดงผลข้อมูลของผู้สมัคร ส่งผลต่อการตัดสินใจในการคัดเลือกบุคลากรที่เหมาะสมกับตำแหน่งงาน จากปัญหาดังกล่าว คณะผู้วิจัยจึงได้พัฒนาเว็บแอปพลิเคชันอัจฉริยะที่สามารถรวมข้อมูลจากหลายแหล่งให้อยู่ในระบบเดียวกัน ลดความซ้ำซ้อน และลดโอกาสเกิดข้อผิดพลาดของมนุษย์ โดยใช้เทคโนโลยี AI และ Machine Learning ในการวิเคราะห์และให้คะแนนความเหมาะสมของผู้สมัครอย่างแม่นยำ พร้อมทั้งพัฒนาแดชบอร์ดที่ช่วยให้ฝ่ายทรัพยากรบุคคลสามารถดูข้อมูล วิเคราะห์ และตัดสินใจคัดเลือกบุคลากรได้รวดเร็วยิ่งขึ้น ทำให้กระบวนการสรรหาพนักงานมีประสิทธิภาพและลดภาระงานของฝ่ายสรรหาได้อย่างมีนัยสำคัญ
วิทยาลัยอุตสาหกรรมการบินนานาชาติ
The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.
คณะบริหารธุรกิจ
This project aims to develop seafood dipping sauce and Jaew sauce in solid cube form to address the limitations of liquid sauces, which can be difficult to carry and prone to spillage, as well as powdered sauces, which may lose their texture and authentic flavor. The research and development process focuses on utilizing distinct ingredients and innovative production techniques to enhance the quality and functionality of the product. The primary objective of this project is to introduce an innovative solution that improves the convenience of consumption and transportation while preserving the original taste and quality of traditional dipping sauces. The expected outcome is a novel dipping sauce product in solid cube form that is easy to carry, minimizes the risk of spillage, and holds potential for commercial development in the food industry.
คณะวิศวกรรมศาสตร์
Inventing robots for the TPA Robotics Competition Thailand Championship 2024, game “Rice Way, Thai Way to the International Way (HARVEST DAY)”