
"Green and Smart City Innovation" is a concrete integration of social innovation and innovation for smart city in Chiang Rai Province with an interdisciplinary collabarative learning approach based on the research and development of learning in the area by the community. Project Title : “APOLE” Cultural Product Design: The Cultural Product Design Beyond. “City development that aims to improve the quality of life By increasing the efficiency of service city management cost reduction and use of resources Emphasis is placed on the participation mechanisms of the public sector, private sector, public sector, and academic sector. Under the concept of developing a livable, modern, sustainable city that provides citizens in the city with a good quality of life. by leveraging technology and innovation as tools” to move towards a Smart City in the future The government sector uses technology as a driving force. Emphasis is placed on creating an infrastructure system. (Infrastructure) to be consistent with the living conditions of local people. By laying down telecommunications infrastructure, smart poles, arranging electrical wires and grounding communication cables. Installation of intelligent CCTV systems, air quality improvement, Internet of Things (IoT) devices, and Internet of Things (IoT) technology control systems, which help improve people's quality of life so that they can live with more quality.
พัฒนาเสาอัจฉริยะcและระบบปรับปรุงคุณภาพอากาศเพื่อใช้ในพื้นที่สาธารณะของเมือง โดยมีอรรถประโยชน์ ในการตรวจประเมินสภาพแวดล้อม การตรวจพื้นที่ด้วยกล้องวงจรปิด CCTV เป็นแหล่งจ่ายพลังงานไฟฟ้า เป็นต้น

คณะเทคโนโลยีการเกษตร
This project presents a design and management approach for agricultural land in Kanchanaburi Province. The case study area is situated in Wangdong Subdistrict, Mueang Kanchanaburi District, covering an area of approximately 18 rai (7.2 acres). As the user seeks a simplified lifestyle in the countryside, surrounded by nature, the design aligns with this vision of simplicity and sustainability. The land is systematically allocated to optimize the benefits for both daily living and agricultural industry development. The crop cultivation zones are designed to suit the local climate and plant varieties, ensuring high-quality yields for continuous utilization. Meanwhile, the livestock zones are clearly delineated to maintain balance and organization. This approach not only ensures food security and income generation but also promotes a lifestyle that harmonizes with nature, minimizes environmental impact, and supports the long-term development of an efficient and eco-friendly agricultural industry. Comprehensive attention is given to the positioning of various zones, considering wind direction and sunlight exposure. Additionally, the design undergoes a rigorous drafting and review process to ensure the optimal outcomes for the land's utilization.

คณะเทคโนโลยีสารสนเทศ
The process of treating cancer patients in the chemotherapy department at Chonburi Cancer Hospital is complicated and inconvenient due to the procedure of submitting blood test results through the personal LINE application of medical staff, which hinders workflow efficiency. Therefore, the researcher has developed a cancer patient management and tracking program in the form of a web-based application and LINE LIFF (LINE Front-end Framework) application to facilitate both medical personnel and patients. The web-based application is designed for medical personnel to monitor, schedule, and collect patient data, while the LINE application is designed for patients to submit blood test results, view appointment schedules, record symptoms after chemotherapy, log their weekly weight, and access a chatbot for consultation. This system is developed based on client-server technology, which enhances data analysis efficiency and supports automated treatment planning. As a result, the cancer treatment process becomes faster, more modern, and more efficient.

คณะเทคโนโลยีการเกษตร
This study aimed to investigate the efficacy of lime containing more than 50% calcium oxide and not less than 29% magnesium oxide in enhancing water alkalinity for Pacific White Shrimp (Litopenaeus vannamei) aquaculture. The experiment was conducted at concentrations of 0, 5, 10, 15, and 20 ppm over a 48-hour period, with data collected at 0, 3, 6, 12, 24, 36, and 48 hours. Results demonstrated that lime exhibited high dissolution efficiency (65-86%) within the first hour and reached complete dissolution (98.5-98.6%) within 6 hours. The pH values initially increased proportionally with lime concentration, gradually decreased during 3-12 hours, before stabilizing. Total alkalinity showed significant increase during the first 3-6 hours and remained stable until the end of the experiment. Statistical analysis revealed that both concentration and time significantly affected all parameters (p < 0.001)