Design a graphic concept for a vending machine and its surrounding area (5x6 meters) featuring INGU skincare products
เพื่อให้พัฒนาความเข้าใจ ความคิด การออกแบบ ให้สอดคล้องกับแบรนด์
คณะอุตสาหกรรมอาหาร
The consumption of plant-based products has been gaining popularity as consumers become more health-conscious and aware of environmental impacts. The food industry has been developing meat analogs with properties similar to conventional meat. This study investigates the chemical and physical properties of chickpea-based meat analog burgers and hybrid burgers containing both chickpeas and pork, using the sous-vide cooking method. This technique helps maintain food quality in terms of texture, moisture retention, and nutritional value. The experiment examined various properties of both types of burgers, including cooking loss, water holding capacity, shear force, pH value, and color analysis. Additionally, sensory evaluation was conducted to assess taste, texture, and overall consumer preference. The findings will provide insights into the optimal sous-vide conditions for producing plant-based and hybrid burgers with desirable quality characteristics that meet the needs of health-conscious consumers. This study serves as a valuable guideline for the food industry in developing high-nutritional-value alternative protein products while reducing meat consumption. By incorporating plant-based ingredients, it helps minimize environmental impact and promotes sustainability in food production. The research is significant in both food science and the development of healthier, competitive food products for the future market.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
This study explores the design, production, and installation of 3D-printed modular artificial reefs (3DMARs) at Koh Khai, Chumphon Province, Thailand, through a design thinking framework. Collaborating with SCG Co., Ltd. and the Department of Marine and Coastal Resources, the research establishes design criteria and installation methods, utilizing content analysis and qualitative research. Key principles such as modularity, flexibility, environmental sustainability, and usability are identified. The user-centered approach optimizes the 3DMARs for transport and deployment, enabling local community involvement and fostering sustainable practices. The modular design supports scalability, enhancing marine habitats and coral larval settlement. Furthermore, underwater monitoring techniques enable site-specific data collection, allowing for the generation of digital twin models. This research offers a practical framework for marine ecosystem restoration and empowers coastal communities in Thailand and beyond
วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
The Water Hyacinth Removal Electric Smart Boat is a small, streamlined boat capable of working in any area. Even small areas with a lot of water hyacinth volumes with advanced technology that the researcher has created and designed. The structure of the boat is made of aluminum material, is 4.80 meters long and 1.20 meters wide, and is powered by a diesel engine 14 hp. Reinforcing drive in tandem with spinning, chopping weeds and the ability to remove water hyacinths by spinning 3-5 per day with only one operator on boat. Therefore, the control and removal of water hyacinths by smart boat works better than conventional mechanization. It can work quickly and at a low cost. This water hyacinth removal electric smart boat concept will be built on the original system.