Fish gelatin is increasingly recognized as an alternative source of gelatin, but its use has been limited due to weak gelling properties. To address these issues, the effect of furcellaran, a gelling agent, was examined at various levels (25-100% FG substitution) on the structural and physicochemical properties of FG gels. As the amount of FUR increased to 25%, the FG/FUR gel showed improved hardness and gel strength (P<0.05). Additionally, increasing FUR levels led to higher gelling and melting points, showing a dose-dependent relationship. Microstructural analysis revealed that adding FUR created a denser gel network with smaller gaps. SAXS scattering intensities also increased as FUR concentration rose. Overall, adding FUR improved the gelling properties of FG without negatively affecting springiness and syneresis, enhancing gel strength and gelling temperature.
The limitations of fish gelatin (FG) in terms of weak gelling properties, low gel strength, and inability to set at room temperature. By investigating the impact of furcellaran (FUR), a gelling agent, the study offers a solution to enhance FG’s functional properties, making it a more viable alternative to traditional animal-based gelatin. The findings suggest that FUR improves the texture, gel strength, and thermal stability of FG, which is crucial for a wide range of applications in the food and pharmaceutical industries. This could lead to the development of more sustainable, plant-based gelling agents, offering ethical and environmental benefits. Additionally, the study enhances the understanding of the molecular interactions between FG and FUR, providing a foundation for further innovations in gelation technology and the creation of improved, multifunctional gel-based products.
คณะอุตสาหกรรมอาหาร
This research aimed to isolate and culture four strains of lactic acid bacteria (LAB) isolated from fermented foods. The antimicrobial activity of the lactic acid bacteria was studied using the agar spot method and the antibiotic resistance properties of the lactic acid bacteria were studied using the agar overlay diffusion method. The results showed that each strain of lactic acid bacteria had different levels of antimicrobial activity and antibiotic resistance, which are safety properties of probiotic microorganisms.
วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Since organic rice storage silos were faced with an insect problem, an owner solved this problem using the expert system (ES) in the controlled atmosphere process (CAP) under the required standard, fumigating insects with an N2, reducing O2 concentration to less than 2% for 21 days. This article presents the computational fluid dynamics (CFD) assisted ES successfully solved this problem. First, CFD was employed to determine the gas flow pattern, O2 concentration, proper operating conditions, and a correction factor (K) of silos. As expected, CFD results were consistent with the experimental results and theory, assuring the CFD’s credibility. Significantly, CFD results revealed that the ES controlled N2 distribution throughout the silos and effectively reduced O2 concentration to meet the requirement. Next, the ES was developed based on the inference engine assisted by CFD results and the sweep-through purging principle, and it was implemented in the CAP. Last, the experiments evaluated CAP’s efficacy in controlling O2 concentration and insect extermination in the actual silos. The experimental results and owner’s feedback confirmed the excellent efficacy of ES implementation; therefore, the CAP is effective and practical. The novel aspect of this research is a CFD methodology to create the inference engine and the ES.
คณะวิศวกรรมศาสตร์
Jaundice, a common condition in infants that results from high bilirubin levels in the blood, often requires early diagnosis and monitoring to prevent severe complications, especially in newborns. Traditional diagnostic methods can be time-consuming and subject to human error. This study proposes an approach for real-time jaundice detection using advanced image processing techniques and machine learning algorithms. By analyzing images captured in RGB color spaces, pixel values are extracted and processed through Otsu’s thresholding and morphological operations to detect color patterns indicative of jaundice. A classifier model is then trained to distinguish between normal and jaundiced conditions, offering an automated, accurate, and efficient diagnostic tool. The system’s potential to operate in real-time makes it particularly suited for clinical settings, providing healthcare professionals with timely insights to improve patient outcomes. The proposed method represents a significant innovation in healthcare, combining artificial intelligence and medical imaging to enhance the early detection and management of jaundice, reducing reliance on manual interventions and improving overall healthcare delivery.