Fish gelatin is increasingly recognized as an alternative source of gelatin, but its use has been limited due to weak gelling properties. To address these issues, the effect of furcellaran, a gelling agent, was examined at various levels (25-100% FG substitution) on the structural and physicochemical properties of FG gels. As the amount of FUR increased to 25%, the FG/FUR gel showed improved hardness and gel strength (P<0.05). Additionally, increasing FUR levels led to higher gelling and melting points, showing a dose-dependent relationship. Microstructural analysis revealed that adding FUR created a denser gel network with smaller gaps. SAXS scattering intensities also increased as FUR concentration rose. Overall, adding FUR improved the gelling properties of FG without negatively affecting springiness and syneresis, enhancing gel strength and gelling temperature.
The limitations of fish gelatin (FG) in terms of weak gelling properties, low gel strength, and inability to set at room temperature. By investigating the impact of furcellaran (FUR), a gelling agent, the study offers a solution to enhance FG’s functional properties, making it a more viable alternative to traditional animal-based gelatin. The findings suggest that FUR improves the texture, gel strength, and thermal stability of FG, which is crucial for a wide range of applications in the food and pharmaceutical industries. This could lead to the development of more sustainable, plant-based gelling agents, offering ethical and environmental benefits. Additionally, the study enhances the understanding of the molecular interactions between FG and FUR, providing a foundation for further innovations in gelation technology and the creation of improved, multifunctional gel-based products.
คณะวิทยาศาสตร์
The current residential solar panels lack an adequate monitoring system, which hinders their optimal utilization. This research aims to design an Internet of Things (IoT) monitoring system and employ machine learning techniques to predict the current and voltage generated by solar panels. Experimental studies have revealed a correlation between dust accumulation and the current output of solar panels. The proposed system facilitates the prediction of the optimal time for cleaning solar panels.
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
From the current situation and uncertainty; leads to the concept of food security. It is the application of innovation and technology to create high productivity in a limited area. The unused buildings in urban areas were renovated for planting, created as a learning area for planting in urban area. The different methods of growing plants were presented. There are 35 planting innovations for disseminating knowledge, to create food security, self-reliant, supports sustainable living.
คณะเทคโนโลยีการเกษตร
The extreme weathers according to PM 2.5 is a global problem with out any borders. This pollutant can directly attack human health. The objective of the study was aimed to develop medicinal plant essential oil emulsions in order to use to decrease PM 2.5 based on chemical characterization of water-soluble anions and cations. A mount of 31 medicinal plant essential oil emulsions were prepared and then initially careened and tested for their efficiency in reducing PM 2.5 under test chamber by spraying method. It was found that spraying for 1 hr with kaffir lime essential oil emulsion at 0.025% concentration could reduce PM 2.5 obtained from engine exhaust pipe effectively when PM 2.5 of 24.7 µg/m3 was detected within 6 hrs, followed by kaffir lime essential oil emulsion at 0.05% and Eucalyptus essential oil emulsion at 0.05% and 0.025% concentration resulting in 27.3, 30.0 and 95.3 µg/m3, respectively. Whereas, water (blank) and control group (water and carboxymethylcellulose, CMC 0.2%) showed high revels of PM 2.5 with 126.4 and 157.3 µg/m3, respectively. This kaffir lime essential oil emulsion at 0.025% concentration showed 3-6 time decline of PM 2.5 upward 2 hrs compared with control group. Field experiment was performed at 3 Bangkok parks, namely, Suantaweewanarom, Suanbankharepirom and Suanthonbureerom. There were many factors affecting the decline of PM 2.5 caused by this essential oil emulsion, particularly, the windy as well as temperature and humidity. PM 2.5 level tended to be decreased after the beginning of spraying. In general, PM 2.5 levels appeared at those 3 parks were decreased rapidly within 1 hr as by average of 21.8 (7.7-27.3) µg/m3, Whereas, decline of only 6.4 (5.0-8.0) µg/m3 was observed in control (water). Incase of calm wind, (10-20 km/hr) this plant essential oil emulsion could even reduce PM 2.5 at 37.0-44.0 µg/m3 and reached to 13.5-16.5 µg/m3 within 3 hrs. As high level of PM 2.5 as 98.0-101.0 µg/m3 , it could reduce PM 2.5 to be an average of 23.0-26.5 µg/m3 within 3 hrs, Whereas, the use of water performed low capacity of PM 2.5 reduction found with only 31.0-40.0 µg/m3. However, windy condition (15-35 km/hr), the efficacy of this essential oil emulsion seem to be lower but tended to work better than using water alone