KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

BrushXchange; A toothbrush featuring a recycled plastic handle and a replaceable brush head.

Abstract

BrushXchange is a toothbrush brand dedicated to reducing plastic waste in Thailand by offering toothbrushes made from recycled plastic with replaceable bristles. These products help minimize waste generated by traditional toothbrushes. The design is modern and user-friendly, emphasizing durability, comfort, and affordability, making it appropriate for health-conscious and environmentally aware consumers. The brand aims to drive change in the oral care industry by providing high-quality products at accessible prices. Its marketing strategy focuses on using social media platforms like Instagram and TikTok and collaborating with organizations that promote sustainability. The product is distributed through retail stores such as Lotus’s and Tops. BrushXchange also prioritizes environmental responsibility by using recycled paper packaging and organizing sustainability campaigns. The brand's long-term goal is to become a widely recognized brand image in the eco-friendly toothbrush market in Thailand while encouraging sustainable living habits within society.

Objective

1.ปัญหาขยะพลาสติกในประเทศไทย ประเทศไทยมีการผลิตขยะรวม 27.8 ล้านตันต่อปี โดยขยะพลาสติกคิดเป็น 12-13% ของปริมาณขยะทั้งหมด โดยขยะพลาสติกจากแปรงสีฟันที่ใช้แล้วทิ้งเป็นอีกปัจจัยที่ทำให้ปริมาณขยะเพิ่มขึ้น ด้วยจำนวนประชากรไทยกว่า 66 ล้านคน มีความเป็นไปได้ที่จะมีแปรงสีฟันที่ถูกทิ้งปีละประมาณ 66 ล้านชิ้น 2.มุ่งเน้นการสร้างความตระหนักรู้เกี่ยวกับปัญหาขยะพลาสติกในชุมชนและสังคม 3.เราต้องการนำเสนอผลิตภัณฑ์ที่ตอบสนองความต้องการของผู้บริโภคที่ใส่ใจสิ่งแวดล้อม โดยยังคงคุณภาพ ทนทาน และใช้งานได้สะดวก

Other Innovations

Spray System of Plant Essential Oil Emulsion for Reducing PM2.5

คณะเทคโนโลยีการเกษตร

Spray System of Plant Essential Oil Emulsion for Reducing PM2.5

The extreme weathers according to PM 2.5 is a global problem with out any borders. This pollutant can directly attack human health. The objective of the study was aimed to develop medicinal plant essential oil emulsions in order to use to decrease PM 2.5 based on chemical characterization of water-soluble anions and cations. A mount of 31 medicinal plant essential oil emulsions were prepared and then initially careened and tested for their efficiency in reducing PM 2.5 under test chamber by spraying method. It was found that spraying for 1 hr with kaffir lime essential oil emulsion at 0.025% concentration could reduce PM 2.5 obtained from engine exhaust pipe effectively when PM 2.5 of 24.7 µg/m3 was detected within 6 hrs, followed by kaffir lime essential oil emulsion at 0.05% and Eucalyptus essential oil emulsion at 0.05% and 0.025% concentration resulting in 27.3, 30.0 and 95.3 µg/m3, respectively. Whereas, water (blank) and control group (water and carboxymethylcellulose, CMC 0.2%) showed high revels of PM 2.5 with 126.4 and 157.3 µg/m3, respectively. This kaffir lime essential oil emulsion at 0.025% concentration showed 3-6 time decline of PM 2.5 upward 2 hrs compared with control group. Field experiment was performed at 3 Bangkok parks, namely, Suantaweewanarom, Suanbankharepirom and Suanthonbureerom. There were many factors affecting the decline of PM 2.5 caused by this essential oil emulsion, particularly, the windy as well as temperature and humidity. PM 2.5 level tended to be decreased after the beginning of spraying. In general, PM 2.5 levels appeared at those 3 parks were decreased rapidly within 1 hr as by average of 21.8 (7.7-27.3) µg/m3, Whereas, decline of only 6.4 (5.0-8.0) µg/m3 was observed in control (water). Incase of calm wind, (10-20 km/hr) this plant essential oil emulsion could even reduce PM 2.5 at 37.0-44.0 µg/m3 and reached to 13.5-16.5 µg/m3 within 3 hrs. As high level of PM 2.5 as 98.0-101.0 µg/m3 , it could reduce PM 2.5 to be an average of 23.0-26.5 µg/m3 within 3 hrs, Whereas, the use of water performed low capacity of PM 2.5 reduction found with only 31.0-40.0 µg/m3. However, windy condition (15-35 km/hr), the efficacy of this essential oil emulsion seem to be lower but tended to work better than using water alone

Read more
In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

คณะวิทยาศาสตร์

In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

Cancer remains a major global health challenge as the second-leading cause of human death worldwide. The traditional treatments for cancer beyond surgical resection include radiation and chemotherapy; however, these therapies can cause serious adverse side effects due to their high killing potency but low tumor selectivity. The FDA approved monoclonal antibodies (mAbs) that target TIGIT/PVR (T-cell immunoglobulin and ITIM domain/poliovirus receptor) which is an emerging immune checkpoint molecules has been developed; however, the clinical translation of immune checkpoint inhibitors based on antibodies is hampered due to immunogenicity, immunological-related side effects, and high costs, even though these mAbs show promising therapeutic efficacy in clinical trials. To overcome these bottlenecks, small-molecule inhibitors may offer advantages such as better oral bioavailability and tumor penetration compared to mAbs due to their smaller size. Here, we performed structure-based virtual screening of FDA-approved drug repertoires. The 100 screened candidates were further narrowed down to 10 compounds using molecular docking, with binding affinities ranging from -9.152 to -7.643 kcal/mol. These compounds were subsequently evaluated for their pharmacokinetic properties using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis, which demonstrated favorable drug-like characteristics. The lead compounds will be further analyzed for conformational changes and binding stability against TIGIT through molecular dynamics (MD) simulations to ensure that no significant conformational changes occur in the protein structure. Collectively, this study represents the potential of computational methods and drug repurposing as effective strategies for drug discovery, facilitating the accelerated development of novel cancer treatments.

Read more
Power of Leaves: A Natural Fluorescent Seed Coating Innovation for Anti-Counterfeiting

คณะเทคโนโลยีการเกษตร

Power of Leaves: A Natural Fluorescent Seed Coating Innovation for Anti-Counterfeiting

This experiment aimed to study the suitable types of polymers for coating with chlorophyll extract and the quality of cucumber seeds after coating. The experiment was planned using a Completely Randomized Design (CRD) with four replications, consisting of five methods involving seeds coated with different types of polymers: Polyvinylpyrrolidone, Sodium Alginate, Carboxy Methyl Cellulose, and Hydroxypropyl Methylcellulose, each polymer being coated alongside chlorophyll, with uncoated seeds serving as the control method. The coating substance was prepared by extracting chlorophyll from mango leaves, then mixed with each type of polymer at a concentration of 1%, using an 8% concentration of chlorophyll extract. The properties of each coating method, such as pH and viscosity of the coating substance, were examined before coating the cucumber seeds with a rotary disk coater model RRC150 at a coating rate of 1,100 milliliters per 1 kilogram of seeds. Subsequently, the seeds were dried to reach the initial moisture level using a hot air blower, and seed quality was assessed in various aspects, including seed moisture, germination rate under laboratory conditions, germination index, and seed fluorescence under a portable ultraviolet light illuminator, as well as light emission spectrum analysis using a Spectrophotometer. The experiment found that each type of polymer could be used to form a film together with chlorophyll, which had appropriate pH and viscosity for the coating without affecting seed quality and showed fluorescence on the seed surface both under portable ultraviolet light and spectral emission analysis with a Spectrophotometer. Using HPMC as the film-forming agent with chlorophyll was the most suitable method, enhancing seed fluorescence efficiency.

Read more