KMITL Innovation Expo 2026 LogoKMITL 66th Anniversary Logo

Design Public Park Project : Saint Chon College Campus Park

Design Public Park Project : Saint Chon College Campus Park

Abstract

Expanding from a public park design project to a campus design on an area of ​​over 50 rai in Ang Sila Subdistrict, Mueang District, Chonburi Province, to serve as both an educational institution and a place for relaxation and learning for the surrounding people.

Objective

การพัฒนาพื้นที่แห่งนี้ให้กลายเป็นCampus Park เพื่อเป็นพื้นที่พักผ่อนและแลกเปลี่ยนความรู้เกี่ยวกับระบบนิเวศชายหาดของจังหวัดชลบุรี

Other Innovations

Cracking the PM2.5 Code

คณะวิทยาศาสตร์

Cracking the PM2.5 Code

Air pollution, particularly PM2.5, is a major environmental and public health concern in Bangkok. Instead of predicting PM2.5 levels, this project aims to identify the most significant factors influencing PM2.5 concentration. By analyzing historical air quality, weather, and other environmental data, we will determine which variables—such as temperature, humidity, wind speed, or other pollutants—have the greatest impact on PM2.5 fluctuations.

Read more
In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

คณะวิทยาศาสตร์

In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

Cancer remains a major global health challenge as the second-leading cause of human death worldwide. The traditional treatments for cancer beyond surgical resection include radiation and chemotherapy; however, these therapies can cause serious adverse side effects due to their high killing potency but low tumor selectivity. The FDA approved monoclonal antibodies (mAbs) that target TIGIT/PVR (T-cell immunoglobulin and ITIM domain/poliovirus receptor) which is an emerging immune checkpoint molecules has been developed; however, the clinical translation of immune checkpoint inhibitors based on antibodies is hampered due to immunogenicity, immunological-related side effects, and high costs, even though these mAbs show promising therapeutic efficacy in clinical trials. To overcome these bottlenecks, small-molecule inhibitors may offer advantages such as better oral bioavailability and tumor penetration compared to mAbs due to their smaller size. Here, we performed structure-based virtual screening of FDA-approved drug repertoires. The 100 screened candidates were further narrowed down to 10 compounds using molecular docking, with binding affinities ranging from -9.152 to -7.643 kcal/mol. These compounds were subsequently evaluated for their pharmacokinetic properties using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis, which demonstrated favorable drug-like characteristics. The lead compounds will be further analyzed for conformational changes and binding stability against TIGIT through molecular dynamics (MD) simulations to ensure that no significant conformational changes occur in the protein structure. Collectively, this study represents the potential of computational methods and drug repurposing as effective strategies for drug discovery, facilitating the accelerated development of novel cancer treatments.

Read more
Intraspecific variations of dwarf whipray Brevitrygon heterura (Chondrichthyes: Dasyatidae) in the Gulf of Thailand.

คณะเทคโนโลยีการเกษตร

Intraspecific variations of dwarf whipray Brevitrygon heterura (Chondrichthyes: Dasyatidae) in the Gulf of Thailand.

Dwarf whipray (Brevitrygon heterura) is a common species found in a local market in the Gulf of Thailand. However, like many other species of stingrays, it is threatened by overfishing and habitat destruction. Therefore, an accurate species identification is crucial because conservation efforts may vary depending on the species. This study aims to understand morphological variation of B. heterura in the Gulf of Thailand by morphometric study and genetic analysis. During October 2022 and February 2023, we obtained 49 samples from research vessels fish landing ports and local fish markets. We observed two distinct groups based on 43 morphological variables/ratios. B. heterura samples from Chanthaburi, Rayong, Chonburi, Samut Sakhon, Nakhon Si Thammarat and Songkla provinces, called “group A," typically have longer snout length than those from Prachuap Khiri Khan provinces, called “group B" according to external morphological characters for species identification. Three morphological variables/ratios were significantly different between groups A and B. Main characters to explain intraspecific variations between group A and group B are further discussed. DNA barcoding based on a fragment of the cytochrome c oxidase subunit I (COI) gene were obtain from eight samples of group A and eight samples from group B. Pairwise percent sequence divergence (p-distance) for COI between group A and group B were 0.0-2.5. This study contributes to the understanding of variations of morphology and genetics of B. heterura in the Gulf of Thailand.

Read more