Zero-waste management is crucial for sustainable food systems, promoting the use of agricultural by-products like rice bran. Rich in bioactive polyphenols with antioxidant and antidiabetic properties, rice bran can enhance the nutritional value of food. Polyphenols can slow starch digestion by forming complexes with starch, making them useful for creating low-glycemic foods. While ultrasonication and freeze-thaw treatments have been beneficial individually, their combined effects on starch-polyphenol complexation remain understudied. This study aimed to evaluate the impact of combining these treatments on the interaction between rice starch and red rice bran polyphenols. The dual treatment increased the complexing index, altered functional properties, and affected granule morphology. Structural analysis indicated non-covalent interactions forming non-V-type complexes. Additionally, starch digestibility was reduced, lowering the estimated glycemic index (eGI) compared to the control. These findings suggest a sustainable and green approach to starch modification, with potential for developing functional food products and advancing zero-waste processing.
The growing emphasis on zero-waste management and sustainable food systems has highlighted rice bran as a valuable yet underutilized by-product rich in bioactive polyphenols with antidiabetic properties. Meanwhile, modifying starch to reduce its glycemic response is crucial for diabetes management. Green processing techniques, such as ultrasonication and freeze-thaw treatment, offer a sustainable way to enhance starch-polyphenol complexation, slowing starch digestion naturally. This study explores the synergistic effects of these methods on rice starch-polyphenol complexes from red rice bran, evaluating their structural, functional, and digestibility properties. The findings demonstrate that dual-treated complexes lower starch digestibility and glycemic index (eGI), making them promise for functional food development. Additionally, this research supports sustainable food processing while contributing to healthier, low-glycemic food alternatives

คณะวิทยาศาสตร์
Direct Arc Plasma Generator with Six Nozzles, Applications of Plasma Technology and Progress in Nuclear Fusion and Thailand Tokamak-1 (TT1) Development

คณะเทคโนโลยีการเกษตร
This experiment aimed to study the suitable types of polymers for coating with chlorophyll extract and the quality of cucumber seeds after coating. The experiment was planned using a Completely Randomized Design (CRD) with four replications, consisting of five methods involving seeds coated with different types of polymers: Polyvinylpyrrolidone, Sodium Alginate, Carboxy Methyl Cellulose, and Hydroxypropyl Methylcellulose, each polymer being coated alongside chlorophyll, with uncoated seeds serving as the control method. The coating substance was prepared by extracting chlorophyll from mango leaves, then mixed with each type of polymer at a concentration of 1%, using an 8% concentration of chlorophyll extract. The properties of each coating method, such as pH and viscosity of the coating substance, were examined before coating the cucumber seeds with a rotary disk coater model RRC150 at a coating rate of 1,100 milliliters per 1 kilogram of seeds. Subsequently, the seeds were dried to reach the initial moisture level using a hot air blower, and seed quality was assessed in various aspects, including seed moisture, germination rate under laboratory conditions, germination index, and seed fluorescence under a portable ultraviolet light illuminator, as well as light emission spectrum analysis using a Spectrophotometer. The experiment found that each type of polymer could be used to form a film together with chlorophyll, which had appropriate pH and viscosity for the coating without affecting seed quality and showed fluorescence on the seed surface both under portable ultraviolet light and spectral emission analysis with a Spectrophotometer. Using HPMC as the film-forming agent with chlorophyll was the most suitable method, enhancing seed fluorescence efficiency.

คณะเทคโนโลยีสารสนเทศ
This research presents a deep learning method for generating automatic captions from the segmentation of car part damage. It analyzes car images using a Unified Framework to accurately and quickly identify and describe the damage. The development is based on the research "GRiT: A Generative Region-to-text Transformer for Object Understanding," which has been adapted for car image analysis. The improvement aims to make the model generate precise descriptions for different areas of the car, from damaged parts to identifying various components. The researchers focuses on developing deep learning techniques for automatic caption generation and damage segmentation in car damage analysis. The aim is to enable precise identification and description of damages on vehicles, there by increasing speed and reducing the work load of experts in damage assessment. Traditionally, damage assessment relies solely on expert evaluations, which are costly and time-consuming. To address this issue, we propose utilizing data generation for training, automatic caption creation, and damage segmentation using an integrated framework. The researchers created a new dataset from CarDD, which is specifically designed for cardamage detection. This dataset includes labeled damages on vehicles, and the researchers have used it to feed into models for segmenting car parts and accurately labeling each part and damage category. Preliminary results from the model demonstrate its capability in automatic caption generation and damage segmentation for car damage analysis to be satisfactory. With these results, the model serves as an essential foundation for future development. This advancement aims not only to enhance performance in damage segmentation and caption generation but also to improve the model’s adaptability to a diversity of damages occurring on various surfaces and parts of vehicles. This will allow the system to be applied more broadly to different vehicle types and conditions of damage inthe future