Zero-waste management is crucial for sustainable food systems, promoting the use of agricultural by-products like rice bran. Rich in bioactive polyphenols with antioxidant and antidiabetic properties, rice bran can enhance the nutritional value of food. Polyphenols can slow starch digestion by forming complexes with starch, making them useful for creating low-glycemic foods. While ultrasonication and freeze-thaw treatments have been beneficial individually, their combined effects on starch-polyphenol complexation remain understudied. This study aimed to evaluate the impact of combining these treatments on the interaction between rice starch and red rice bran polyphenols. The dual treatment increased the complexing index, altered functional properties, and affected granule morphology. Structural analysis indicated non-covalent interactions forming non-V-type complexes. Additionally, starch digestibility was reduced, lowering the estimated glycemic index (eGI) compared to the control. These findings suggest a sustainable and green approach to starch modification, with potential for developing functional food products and advancing zero-waste processing.
The growing emphasis on zero-waste management and sustainable food systems has highlighted rice bran as a valuable yet underutilized by-product rich in bioactive polyphenols with antidiabetic properties. Meanwhile, modifying starch to reduce its glycemic response is crucial for diabetes management. Green processing techniques, such as ultrasonication and freeze-thaw treatment, offer a sustainable way to enhance starch-polyphenol complexation, slowing starch digestion naturally. This study explores the synergistic effects of these methods on rice starch-polyphenol complexes from red rice bran, evaluating their structural, functional, and digestibility properties. The findings demonstrate that dual-treated complexes lower starch digestibility and glycemic index (eGI), making them promise for functional food development. Additionally, this research supports sustainable food processing while contributing to healthier, low-glycemic food alternatives
คณะวิศวกรรมศาสตร์
This project focuses on developing a test device for an AC charger for electric vehicles according to the IEC 61851-1 Annex A standard by simulating the test circuit inside an electric vehicle according to the standard to test the operation of the AC charger. The test topic is related to the communication between the electric vehicle and the charger via a Pulse Width Modulation (PWM) control circuit system and creating an operation manual (WI) to prepare for testing in accordance with ISO/IEC 17025 standards, which are general requirements for laboratory capabilities in conducting tests and/or calibrations. The overall picture of this project is to develop test equipment and create an operation manual by collecting knowledge and various devices and then comparing the data to meet the abovementioned standards to test the Type II AC charger in each state. The test equipment consists of a communication part between the test equipment and the AC charger using a PLC S7-1200 and an HMI to control the operation of the switches in the test equipment circuit, including controlling parameters and displaying results. The equipment used to measure values is an oscilloscope and a multimeter that have undergone a calibration process to comply with the specified standards.
คณะเทคโนโลยีการเกษตร
The Public Park Project: Bubbledel Park is a new-style public park located at Suan Phra Nakhon in Lat Krabang District, Bangkok. Designed to be modern and entertaining, the park incorporates the concept of using bubbles to add vibrancy and create a unique connection with nature, unlike any other place.
คณะวิศวกรรมศาสตร์
This research focuses on the design and development of a high-power converter to regulate energy supply from solar cells (Photovoltaic: PV) to a hydrogen production unit (Electrolyzer), which is a crucial component in advancing renewable energy in alignment with the RE100 initiative. Specifically, this study targets Green Hydrogen, which is generated through the water electrolysis process using clean energy from solar cells, ensuring zero emissions and environmental sustainability. The proposed converter includes of a Three-Level NPC Inverter, transformer, Full-Bridge Rectifier, and LC filter to enhance the power quality supplied to the electrolyzer. The system's design and simulation were conducted using MATLAB and Simulink to evaluate circuit performance and analyze operational efficiency. Simulation was conducted using MATLAB and Simulink to evaluate circuit performance and analyze operational efficiency. Additionally, a microcontroller-based control system is integrated with a gate driver circuit to optimize the electrolysis process by reducing power losses. This proposed converter effectively converts PV energy into suitable voltage and current levels for the electrolyzer while maintaining high hydrogen production efficiency.