A high-pressure gas storage tank made from composite materials, including carbon fiber, resin, and plastic, is designed for storing compressed natural gas (CNG) or hydrogen. This type of tank is classified as a Type IV high-pressure vessel. In this research, it is designed to operate at a pressure of 250 bar for the transportation of compressed natural gas.
การบรรจุก๊าซที่ความดันสูงต้องใช้บรรจุภัณฑ์ที่มีความแข็งแรง การใช้ถังที่ผลิตจากโลหะถูกนำมาใช้ในช่วงแรกๆ แต่ปัญหาที่ตามมาคือน้ำหนักมากทำให้สิ้นเปลืองเชื้อเพลิงในกรณีที่นำไปติดตั้งบนยานพาหนะ จึงเกิดการพัฒนาถังความดันที่พัฒนาจากวัสดุประกอบขึ้นซึ่งจะช่วยลดน้ำหนักของบรรจุภัณฑ์และการกัดกร่อนเกิดขึ้นน้อย
คณะวิศวกรรมศาสตร์
In this project, we introduce Power Grid Analyzer (PGAz), an open-source software package based on MATLAB, specifically designed for analyzing and controlling future power grids. Initially, PGAz is equipped with four fundamental features: power flow (PF), optimal power flow (OPF), small-signal stability analysis (SSSA), and time-domain simulation (TS). At this stage, Part I concentrates on the development of PF and OPF. The formats of our developed tool are presented, along with its command prompts. In this part, we have developed several conventional yet effective methods in the PGAz package to address PF and OPF problems, including techniques such as the Newton-Raphson method, Gauss-Seidel method, Interior Point Method, Iwamoto’s method, Fast Decoupled Load Flow, Genetic Algorithm, and Particle Swarm Optimization. Additionally, it emphasizes important aspects, algorithms, and various case studies that have been tested against IEEE benchmarks ranging from the IEEE 5-bus to the IEEE 300-bus test systems. The results demonstrate the capabilities of PGAz for future educational and research applications in PF and OPF. Finally, we outline a plan for developing Part II, which will mainly focus on SSSA and TS.
คณะวิทยาศาสตร์
Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.
คณะวิศวกรรมศาสตร์
An automated hydroponic system for household use has been developed to cater to individuals with limited space who wish to conveniently and easily grow their own salad greens at home. This system is designed to automatically control nutrient delivery by setting appropriate electrical conductivity (EC) and pH levels tailored to the specific salad greens being grown. It includes artificial lighting to enable cultivation in confined spaces with insufficient sunlight and is more cost-effective than similar systems available on the market. System testing revealed that the automated control of EC and pH values performed effectively, achieving the preset levels within 30 minutes and maintaining them consistently throughout operation. In an experiment growing green oak lettuce using a simulated balcony setup, the plants demonstrated a higher growth rate compared to conventional methods, particularly when artificial lighting was used.