
Under The National Broadcasting and Telecommunications Commission (NBTC), the Telecommunication Enforcement Bureau collects a lot of data on service quality by monitoring and controlling the quality of telecommunications services, mainly by assessing mobile network infrastructure. The NBTC used Microsoft Excel for data analysis but became ineffective and slow. We used Python programming for preparation, analysis, and data processing to address this. Raw data was obtained from the Syberiz program in CSV format, processed in Python, and displayed on a dashboard. The dashboard, developed using Power BI, meets NBTC's telecommunications quality standards. It features maps, test results, and graphical representations. This method enhances the dashboard's appearance and usability and speeds up data processing and visualization compared to Microsoft Excel. This project is primarily designed to help the Telecommunication Enforcement Bureau's operations by making data processing and display for telecommunications quality monitoring faster, more effective, and easier to use.
เนื่องจากสำนักงานดูแลกิจการโทรคมนาคม (ดท.) ของสำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ (สำนักงาน กสทช.) มีหน้าที่กำกับดูและการควบคุมคุณภาพการให้บริการโทรคมนาคมตามมาตรากฎหมาย จึงมีการตรวจสอบคุณภาพการให้บริการโทรคมนาคมผ่านโครงข่ายโทรคมนาคมเคลื่อนที่ส่งผลให้ต้องเก็บข้อมูลของคุณภาพการให้บริการโทรคมนาคมจำนวนมหาศาล โดยโปรแกรม Microsoft Excel ซึ่งเป็นโปรแกรมหลักที่สำนักงานดูแลกิจการโทรคมนาคม (ดท.) ของสำนักงาน กสทช. ใช้ในการประมวลผลวิเคราะห์ข้อมูลในปัจจุบันนั้นประมวลผลได้ช้า ทางผู้พัฒนามีความเห็นว่าในปัจจุบันได้มีนวัตกรรมที่ดีกว่าในการใช้งานเพื่อวิเคราะห์ข้อมูล ผู้พัฒนาเลือกใช้ Python Programing ในการประมวลผล วิเคราะห์ และจัดเตรียมข้อมูล จากนั้นนำไฟล์ที่ได้ไปทำการแสดงผลในรูปแบบของหน้าจอแสดงผล (Dashboard) ซึ่งประกอบไปด้วยส่วนของ กราฟ ตารางสรุปผล และแผนที่ในการแสดงผลค่าพารามิเตอร์ต่างๆ โดยใช้โปรแกรม Power BI ในการออกแบบส่วนของการแสดงผล ส่งผลให้หน้าจอแสดงผล (Dashboard) ที่ได้นั้นมีความสวยงาม ง่ายต่อการใช้งาน และที่สำคัญคือความเร็วในการแสดงผลที่ดีกว่า Microsoft Excel โดยโครงงานได้ออกแบบเฉพาะเจาะจงเพื่อใช้งานในส่วนของสำนักงานดูแลกิจการโทรคมนาคม (ดท.) ของสำนักงาน กสทช.เท่านั้น

คณะวิศวกรรมศาสตร์
-

คณะวิทยาศาสตร์
Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
The Department of Engineering Education at KMITL offers courses in power electronics laboratory practices, which require the use of expensive imported training kits. This results in a loss of national revenue due to the purchase of these imported kits. Therefore, the developers propose a power electronics training kit that offers equivalent or superior functionality to the imported ones while being more cost-effective, making it suitable for student experiments.