This special project aims to develop and compare the performance of gold price prediction models using quantitative variables and news text data. The study incorporates nine key predictors, including Brent crude oil prices, WTI crude oil prices, silver prices, platinum prices, the U.S. Federal Reserve's policy interest rate, the Nikkei 225 index, the Dow Jones Industrial Average, the S&P 500 index, and daily news articles from Bangkok Business News. Relevant news data will be processed using Natural Language Processing (NLP) techniques and integrated with three predictive models: Gradient Boosting, Machine Learning Models, and Regression Analysis. The model performance will be evaluated using three key metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R*). This research aims to develop a predictive model that effectively utilizes both quantitative variables and news data to enhance gold price forecasting, providing valuable insights for investors and analysts.
ทองคำ(Gold) เป็นแร่โลหะมีค่า เป็นแร่ธาตุตามธรรมชาติซึ่งมีอยู่น้อยมาก ทองคำมีคุณสมบัติทนต่อการผุกร่อนนิยมนำมาใช้ทำเป็นเครื่องประดับจึงทำให้ทองคําเป็นโลหะที่มีค่าอยู่ในตัวเองและเป็นที่ยอมรับของทุกคนในสังคม ทองคำถือว่าเป็นสินทรัพย์ที่สำคัญในระบบเศรษฐกิจโลกทองคำถูกนำมาใช้เพื่อแสดงเป็นสัญลักษณ์ของความมั่งคั่ง มูลค่าของทองคำนั้น ขึ้นอยู่กับปัจจัยต่างๆมากมาย เช่น ค่าเงินดอลลาร์สหรัฐฯ ราคาน้ำมันดิบ จำนวนที่เพิ่มขึ้นหรือลดลงของเหมืองทองคํา ความเสี่ยงทางการเมืองระหว่างประเทศ และความต้องการทองคำสำหรับเครื่องประดับ(ธนะเกียรติ, 2560) ดังนั้นการคาดการณ์ราคาทองคำได้อย่างถูกต้อง จึงเป็นสิ่งที่นักลงทุน นักวิเคราะห์ และผู้ที่มีส่วนเกี่ยวข้องในตลาดทองคำ ต่างให้ความสนใจ ทองคํายังเป็นส่วนหนึ่งของความมั่นคงทางเศรษฐกิจการคลัง ทองคํามีประโยชน์ในฐานะเป็นโลหะสื่อกลางแห่งการแลกเปลี่ยนเงินตรา จึงถูกสํารองไว้เป็นทุนสํารองเงินตราระหว่างประเทศเพราะทองคํามีมูลค่าในตัวเอง ซึ่งต่างจากเงินตราสกุลต่างๆ ที่มูลค่าอาจเพิ่มหรือลดได้(สมาคมทองคำ, 2526) การทำนายราคาทองคำในปัจจุบันยังคงเป็นเรื่องที่ท้าทายเนื่องจากแบบจำลองที่มีอยู่ยังไม่สามารถอธิบายความผันผวนของราคาทองคำได้อย่างครอบคลุมนอกจากนี้ข้อมูลข่าวสารที่มีจำนวนมากและมีความหลากหลายทำให้การวิเคราะห์และการดึงข้อมูลที่เป็นประโยชน์ออกมาเป็นไปได้ยาก การพัฒนาแบบจำลองการทำนายราคาทองคำที่มีความแม่นยำสูงและสามารถนำข้อมูลข่าวสารมาใช้ในการทำนายได้อย่างมีประสิทธิภาพจึงเป็นสิ่งที่จำเป็น เพื่อตอบสนองความท้าทายนี้ จำเป็นต้องมีการรวมข้อมูลจากหลายแหล่ง รวมถึงการใช้เทคนิคการวิเคราะห์ขั้นสูง เช่น การเรียนรู้ของเครื่อง (machine learning) และปัญญาประดิษฐ์ (AI) เพื่อ วิเคราะห์ข้อมูลและทำนายราคาทองคำ การพัฒนาแบบจำลองที่มีความแม่นยำสูงจะช่วยให้ผู้ลงทุนสามารถทำการตัดสินใจได้ดีขึ้นและลดความเสี่ยงในการลงทุนได้ ราคาทองคำเป็นหนึ่งในสินทรัพย์ที่มีความผันผวนสูงและมีความสำคัญอย่างยิ่งสำหรับนักลงทุนเนื่องจากทองคำถือเป็นสินทรัพย์ที่ปลอดภัยในช่วงที่เศรษฐกิจมีความไม่แน่นอนความผันผวนของราคาทองคำมักถูกกระทบจากปัจจัยหลายประการหนึ่งในปัจจัยที่มีผลอย่างมีนัยสำคัญต่อราคาทองคำคือข้อความข่าวสารต่าง ๆ ที่เกี่ยวข้องกับทองคำโดยตรงข่าวที่มีคำว่า "ทองคำ" หรือเกี่ยวข้องกับทองคำสามารถมีผลกระทบต่อราคาทองคำได้หลายปัจจัย จากการศึกษางานวิจัยของ รจิกาญจน์(2561) ได้ศึกษา ปัจจัยที่ส่งผลกระทบต่อราคาทองคำในตลาดโลก มีจุดมุ่งหมายเพื่อมองภาพรวมในการเคลื่อนไหวของทิศทางราคาทองคำ โดยศึกษาปัจจัยที่มีผลเกี่ยวข้องกับราคาทองคําในตลาดโลก โดยใช้ข้อมูลรายเดือนย้อนหลัง 9 ปี ช่วงปี พ.ศ. 2553-2561 โดยทําการวิเคราะห์สมการถดถอยพหุคูณ จากการศึกษาพบว่ามีเพียง 7 ปัจจัยที่ส่งผลกระทบต่อราคาทองคําในตลาดโลกอย่างมีนัยสําคัญทางสถิติที่ระดับความเชื่อมั่น 95% คือ ดัชนีตลาดหุ้นสหรัฐฯ (Dow Jone Index), ราคาโลหะเงินในตลาดโลก, ดัชนีตลาดหุ้นประเทศญี่ปุ่น (NIKKEI Index), ดัชนีตลาดหุ้นสาธารณรัฐไต้หวัน(TWSE Index), ราคาโลหะแพลทินัมในตลาดโลก, อัตราเงินเฟ้อสหรัฐฯ และดัชนี GDP ของสหรัฐฯ โดยเรียงลําดับตามปัจจัยที่มีความสัมพันธ์กับราคาทองคําในตลาดโลกมากไปน้อย ซึ่งตัวแบบสมการถดถอยพหุคูณสําหรับการพยากรณ์สามารถอธิบายความสัมพันธ์ ระหว่างปัจจัยที่ส่งผลต่อราคาทองคําในตลาดโลกได้ 91.6% โดยสมมติให้ปัจจัยอื่นๆ คงที่ ดังนั้นผู้วิจัยจึงสนใจเปรียบเทียบแบบจำลองการทำนายราคาทองคำโดยใช้ตัวแปรต้น คือ ข้อมูลราคา สินค้าโภคภัณฑ์ที่เกี่ยวข้อง และข้อความจากข่าวที่เกี่ยวข้องกับทองคำ โดยในการศึกษาครั้งนี้ จะประกอบไปด้วย การจัดการข้อมูลประเภทข้อความด้วยการประมวลผลภาษาธรรมชาติ (Natural Language Processing - NLP) การสร้างแบบจำลองการทำนายราคาทองคำ โดยเทคนิคการวิเคราะห์ทางสถิติ และอัลกอริทึมการเรียนรู้ของเครื่อง (Machine Learning) จากนั้นผู้วิจัยจะเปรียบเทียบประสิทธิภาพของแบบจำลอง โดยผู้วิจัยจะใช้ 9 ค่าในการพิจารณาคือ ราคาน้ำมันดิบเบรนท์ ราคาน้ำมันดิบ WTI ราคาโลหะเงินในตลาดโลก ราคาแพลทินัมในตลาดโลก อัตราดอกเบี้ยนโยบายของธนาคารกลางสหรัฐ FED ดัชนีตลาดหุ้นประเทศญี่ปุ่นนิคเคอิ 225 ดัชนี ค่าเฉลี่ยอุตสาหกรรมดาวโจนส์ดัชนี S&P 500 และข่าวรายวันจากสำนักข่าวกรุงเทพธุรกิจผู้วิจัยหวังเป็นอย่างยิ่ง ว่านักลงทุนและผู้ที่เกี่ยวข้องจะสามารถนำผลสรุปจากการวิจัยครั้งนี้ไปใช้เป็นแนวทางในการวางแผนการลงทุนในทองคำได้อย่างมีประสิทธิภาพมากขึ้น การวิจัยนี้มุ่งเน้นให้เห็นถึงความสำคัญของการพัฒนาแบบจำลองการทำนายราคาทองคำที่แม่นยำขึ้น โดยการใช้เทคนิคการวิเคราะห์ที่มีประสิทธิภาพและการรวบรวมข้อมูลที่หลากหลาย เพื่อให้การลงทุนในทองคำเป็นไปอย่างรอบคอบและมีการจัดการความเสี่ยงที่ดียิ่งขึ้น ผู้วิจัยเชื่อว่าผลการศึกษานี้จะเป็นประโยชน์ต่อการตัดสินใจในการลงทุนในทองคำและหวังว่าข้อมูลและข้อเสนอแนะจากการวิจัยนี้จะช่วยให้นักลงทุนสามารถวางกลยุทธ์การลงทุนที่มีประสิทธิภาพและสามารถปรับตัวได้ดียิ่งขึ้นในสภาวะตลาดที่เปลี่ยนแปลงอยู่เสมอ

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Since organic rice storage silos were faced with an insect problem, an owner solved this problem using the expert system (ES) in the controlled atmosphere process (CAP) under the required standard, fumigating insects with an N2, reducing O2 concentration to less than 2% for 21 days. This article presents the computational fluid dynamics (CFD) assisted ES successfully solved this problem. First, CFD was employed to determine the gas flow pattern, O2 concentration, proper operating conditions, and a correction factor (K) of silos. As expected, CFD results were consistent with the experimental results and theory, assuring the CFD’s credibility. Significantly, CFD results revealed that the ES controlled N2 distribution throughout the silos and effectively reduced O2 concentration to meet the requirement. Next, the ES was developed based on the inference engine assisted by CFD results and the sweep-through purging principle, and it was implemented in the CAP. Last, the experiments evaluated CAP’s efficacy in controlling O2 concentration and insect extermination in the actual silos. The experimental results and owner’s feedback confirmed the excellent efficacy of ES implementation; therefore, the CAP is effective and practical. The novel aspect of this research is a CFD methodology to create the inference engine and the ES.

คณะวิศวกรรมศาสตร์
Under The National Broadcasting and Telecommunications Commission (NBTC), the Telecommunication Enforcement Bureau collects a lot of data on service quality by monitoring and controlling the quality of telecommunications services, mainly by assessing mobile network infrastructure. The NBTC used Microsoft Excel for data analysis but became ineffective and slow. We used Python programming for preparation, analysis, and data processing to address this. Raw data was obtained from the Syberiz program in CSV format, processed in Python, and displayed on a dashboard. The dashboard, developed using Power BI, meets NBTC's telecommunications quality standards. It features maps, test results, and graphical representations. This method enhances the dashboard's appearance and usability and speeds up data processing and visualization compared to Microsoft Excel. This project is primarily designed to help the Telecommunication Enforcement Bureau's operations by making data processing and display for telecommunications quality monitoring faster, more effective, and easier to use.

คณะเทคโนโลยีการเกษตร
Siamese fighting fish (Betta splendens) is an ornamental fish that is the first exported economically valuable fish in the country, but there is a limitation to increase the production of betta fish due to climate variability and the shortage of Thai workers. This research aims to develop 2 systems: a betta fish fry nursery system and a market-sized betta fish rearing system by using automated technology to precisely control the water quality in the system and reduce labor costs. Using precise automation consists of two systems: a minimal-waste system, which repurposes some of the waste generated from farming, and a zero-waste system, which treats and recycles all wastewater from farming. These systems aim to address issues related to water quality, animal welfare, and labor requirements in Betta fish farming. Experimental results show that these systems improve Betta fish survival rates by 10-15% compared to traditional methods. When considering net returns, the zero- waste system provides the highest profitability.