
Capsicum chinense is a high-potential economic crop in the food and pharmaceutical industries due to its role as a primary source of capsaicin, a bioactive compound with significant physiological effects. However, capsaicin levels and fruit quality will be influenced by genetic factors, environmental conditions, and genetic-by-environment (G×E) interactions, leading to variability in capsaicin biosynthesis. This study will aim to analyze the impact of different environmental conditions on the growth, fruit quality, and capsaicin content of C. chinense ‘Scotch Bonnet’. The field experiments will be conducted at the demonstration plots of the Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, during two growing seasons: July–October (rainy season) and December–April (dry season). Four condition environments will be evaluated, and environmental parameters such as temperature, relative humidity, and light quality will be monitored to assess their effects on plant physiology and capsaicin biosynthesis. Additionally, an F1 hybrid breeding program will be established using six parental lines through a Half-diallel mating design, generating 15 hybrid combinations. The general combining ability (GCA) and specific combining ability (SCA) will be assessed to identify promising hybrid combinations with high and stable capsaicin content and yield. The findings from this study will be expected to provide valuable insights into optimizing cultivation conditions for high-pungency chili production and supporting the development of F1 hybrid seeds with commercial viability and consistent capsaicin levels.
พริก (Capsicum spp.) เป็นพืชเศรษฐกิจที่มีความสำคัญในอุตสาหกรรมอาหารและยา เนื่องจากเป็นแหล่งของสารแคปไซซิน ซึ่งมีฤทธิ์ทางชีวภาพที่สามารถนำไปใช้ประโยชน์ทางเภสัชกรรมได้ พริกที่มีความเผ็ดร้อนสูง เช่น C. chinense เป็นแหล่งแคปไซซินที่สำคัญ อย่างไรก็ตาม ระดับความเผ็ดในพริกเผ็ดสูงเป็นอุปสรรคสำคัญต่อการผลิตเชิงพาณิชย์ ซึ่งสามารถแก้ไขได้โดยการพัฒนาเมล็ดพันธุ์ลูกผสม (F1) เนื่องจากพืชลูกผสมมักมีลักษณะทางสัณฐานวิทยาและสรีรวิทยาที่สม่ำเสมอ รวมถึงให้ผลผลิตที่สูงกว่าพันธุ์พื้นเมือง ดังนั้น การพัฒนาเมล็ดพันธุ์ลูกผสมของพริกเผ็ดสูงจึงเป็นเทคนิคในการเพิ่มผลผลิตและปริมาณแคปไซซินสำหรับอุตสาหกรรม อย่างไรก็ตาม ปัจจัยสภาพแวดล้อม อุณหภูมิและความเข้มแสง ส่งผลโดยตรงต่อการเจริญเติบโตและการผลิตแคปไซซินของพริก โดยช่วงอุณหภูมิที่เหมาะสมสำหรับการเจริญเติบโตอยู่ระหว่าง 20–25°C และระดับความเข้มแสงที่เหมาะสมอยู่ที่ระดับที่สามารถกระตุ้นการสังเคราะห์แสงได้สูงสุด โดยการปลูกพริกในแปลงเปิด (Open field) เป็นวิธีที่ได้รับความนิยมเนื่องจากมีต้นทุนต่ำและใช้ทรัพยากรธรรมชาติได้อย่างเต็มที่ อย่างไรก็ตาม พริกที่ปลูกกลางแจ้งมักเผชิญกับปัจจัยแวดล้อมที่อุปสรรค เช่น อุณหภูมิสูง ความเข้มแสงที่มากเกินไป ปริมาณน้ำฝน และการเข้าทำลายของศัตรูพืชและเชื้อโรค ซึ่งมีผลกระทบต่ออัตราการติดผลและการสะสมแคปไซซิน ในปัจจุบัน เทคโนโลยีการเกษตรได้มีการพัฒนาโรงเรือนเพื่อช่วยควบคุมปัจจัยแวดล้อมที่ส่งผลต่อการเจริญเติบโตของพืช ซึ่งสามารถจำแนกออกเป็น 3 ประเภทหลัก ได้แก่ โรงเรือนตาข่าย (Net house) ซึ่งช่วยลดความเข้มแสงและป้องกันแมลงศัตรูพืช อุโมงค์ (Greenhouse) ที่สามารถควบคุมอุณหภูมิและความชื้นได้บางส่วน และเรือนกระจกควบคุมเต็มรูปแบบ (Controlled-environment greenhouse) ที่สามารถควบคุมสภาพแวดล้อมทั้งหมด เช่น อุณหภูมิ ความชื้น และความเข้มแสง โรงเรือนเหล่านี้สามารถลดผลกระทบจากปัจจัยแวดล้อมที่ไม่เหมาะสม เช่น ฝนตกหนักในช่วงฤดูฝนและความเข้มแสงที่มากเกินไป ซึ่งอาจเป็นอุปสรรคต่อการเจริญเติบโตของพืช นอกจากนี้ การควบคุมปัจจัยแวดล้อมภายในโรงเรือนยังช่วยเพิ่มผลผลิตของพริกและปรับปรุงคุณภาพของผลผลิตให้มีความสม่ำเสมอมากขึ้น อย่างไรก็ตาม ยังมีข้อจำกัดเกี่ยวกับต้นทุนและเทคโนโลยีที่ต้องใช้ในการบริหารจัดการ ซึ่งเป็นที่ทราบกันดีว่า การผลิตแคปไซซินได้รับอิทธิพลจากพันธุกรรม สภาพแวดล้อม และปฏิสัมพันธ์ระหว่างพันธุกรรมกับสิ่งแวดล้อม นอกจากนี้ พริก C. annuum ซึ่งมีระดับความเผ็ดต่ำกว่าสายพันธุ์อื่น ไม่สามารถผลิตแคปไซซินในปริมาณที่สูงเพียงพอสำหรับการใช้งานในระดับอุตสาหกรรมได้ ส่งผลให้พริกในกลุ่ม C. chinense เป็นทางเลือกที่มีศักยภาพมากกว่าในการผลิตสารออกฤทธิ์ทางชีวภาพสำหรับอุตสาหกรรมอาหารและยา แม้ว่าการปลูกพริกกลางแจ้งจะเป็นแนวทางที่ใช้กันอย่างแพร่หลาย แต่ข้อจำกัดด้านปัจจัยแวดล้อม เช่น อุณหภูมิที่สูงเกินไปและความไม่แน่นอนของปริมาณน้ำฝน อาจส่งผลให้ผลผลิตลดลง ในขณะที่การปลูกในโรงเรือนสามารถควบคุมสภาพแวดล้อมให้เหมาะสมกับการผลิตพริกที่มีคุณภาพสูง อย่างไรก็ตาม การศึกษาเพิ่มเติมเกี่ยวกับสภาพการปลูกที่เหมาะสมสำหรับพริกเผ็ดสูงในกลุ่ม C. chinense ยังคงเป็นสิ่งจำเป็น เพื่อให้สามารถเพิ่มผลผลิตและปริมาณแคปไซซินสูง

คณะเทคโนโลยีการเกษตร
The innovation of the vertical aquaponics system for rearing golden apple snails integrating with vegetable cultivation by using substrates to water treatment. The system aims to maximize the use of vertical space, save water, and produce safe vegetables for consumption or commercial purposes, and to support living things. The golden apple snail excretes wastes/leftover food scraps that are filtered on the substrates used for water treatment. Meanwhile, natural bacteria help change these wastes into nutrients that plants can use. Therefore, the system is environmentally friendly.

คณะวิทยาศาสตร์
This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

คณะวิศวกรรมศาสตร์
This project focuses on the development of an automatic license plate recognition system that supports both standard and special license plates in Thailand. By utilizing Machine Learning technology, the system enhances the efficiency of license plate reading. It can process data from both images and videos. Users can register and subscribe to the service, allowing them to send data for processing through RESTful API, WebSocket, and registered IP cameras.