
This conceptual model, titled "DeHome", incorporates the principles of Deconstructivism in architectural design. It deconstructs the fundamental elements of a house—roof, columns, doors, windows, and bricks—separating them and reassembling them in a way that conveys fragmentation, contradiction, and movement. This design challenges the traditional concept of structural stability by enlarging key elements such as doors, windows, and columns, emphasizing distortion and the dynamic force of transformation. Beyond merely dismantling the physical structure of a house, this project reinterprets the very concept of "home" within the context of contemporary architecture.
ต้องการประยุกต์ความรู้ที่ได้เรียนเข้ากับการออกแบบ และท้าทายความคิดโดยการตีความแนวคิดของ "บ้าน" ใหม่ในบริบทของสถาปัตยกรรมร่วมสมัย

คณะวิทยาศาสตร์
Microalgae are rich in bioactive compounds that may contribute to the growth of probiotics, which require appropriate nutrients, known as prebiotics, to thrive. This study aims to evaluate the effectiveness of crude extracts from intracellular components residues of the microalga Chlorella sp. KLSc61 in promoting the growth of the probiotic bacterium Lactiplantibacillus plantarum JCM1149 under simulated gastrointestinal conditions. The intracellular extracts were obtained using 70% (v/v) ethanol, and their effects on probiotic growth were tested at concentrations of 0.1%, 0.75% and 1.5%. The growth of Lactiplantibacillus plantarum JCM1149 was assessed using the drop plate method. The findings of this study will provide insights into the potential of Chlorella sp. KLSc61 extracts in enhancing probiotic growth, which could lead to the development of synbiotic dietary supplements containing both probiotics and prebiotics. Additionally, this study may serve as a foundation for further research on the role of microalgal extracts in gut health and immune system modulation.

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Since organic rice storage silos were faced with an insect problem, an owner solved this problem using the expert system (ES) in the controlled atmosphere process (CAP) under the required standard, fumigating insects with an N2, reducing O2 concentration to less than 2% for 21 days. This article presents the computational fluid dynamics (CFD) assisted ES successfully solved this problem. First, CFD was employed to determine the gas flow pattern, O2 concentration, proper operating conditions, and a correction factor (K) of silos. As expected, CFD results were consistent with the experimental results and theory, assuring the CFD’s credibility. Significantly, CFD results revealed that the ES controlled N2 distribution throughout the silos and effectively reduced O2 concentration to meet the requirement. Next, the ES was developed based on the inference engine assisted by CFD results and the sweep-through purging principle, and it was implemented in the CAP. Last, the experiments evaluated CAP’s efficacy in controlling O2 concentration and insect extermination in the actual silos. The experimental results and owner’s feedback confirmed the excellent efficacy of ES implementation; therefore, the CAP is effective and practical. The novel aspect of this research is a CFD methodology to create the inference engine and the ES.

คณะวิศวกรรมศาสตร์
This project aims to design and develop an electric tuk-tuk by converting the traditional combustion engine system to an electric system, supporting the reduction of air pollution and promoting sustainable automotive technology. The electric tuk-tuk is designed using a BLDC electric motor and a control system specifically adapted for the unique driving style of three-wheeled vehicles in Thailand. The study considers suitable energy systems and includes interviews with traditional tuk-tuk drivers to ensure the vehicle meets everyday usability needs. The findings suggest that adopting electric tuk-tuks not only reduces emissions and PM2.5 particulate matter but also enhances an eco-friendly image for Thailand’s tourism sector while supporting domestic innovation and economic growth.