Otitis Media is an infection of the middle ear that can occur in individuals of all ages. Diagnosis typically involves analyzing images taken with an otoscope by specialized physicians, which relies heavily on medical experience to expedite the process. This research introduces computer vision technology to assist in the preliminary diagnosis, aiding expert decision-making. By utilizing deep learning techniques and convolutional neural networks, specifically the YOLOv8 and Inception v3 architectures, the study aims to classify the disease and its five characteristics used by physicians: color, transparency, fluid, retraction, and perforation. Additionally, image segmentation and classification methods were employed to analyze and predict the types of Otitis Media, which are categorized into four types: Otitis Media with Effusion, Acute Otitis Media with Effusion, Perforation, and Normal. Experimental results indicate that the classification model performs moderately well in directly classifying Otitis Media, with an accuracy of 65.7%, a recall of 65.7%, and a precision of 67.6%. Moreover, the model provides the best results for classifying the perforation characteristic, with an accuracy of 91.8%, a recall of 91.8%, and a precision of 92.1%. In contrast, the classification model that incorporates image segmentation techniques achieved the best overall performance, with an mAP50-95 of 79.63%, a recall of 100%, and a precision of 99.8%. However, this model has not yet been tested for classifying the different types of Otitis Media.
โรคหูน้ำหนวกเป็นโรคที่เกิดจากการอักเสบของหูชั้นกลาง โดยมีอาการปวดหู หูอื้อ และมีน้ำไหลซึมออกมาจากหู ในบางกรณีที่ได้รับการรักษาไม่ถูกต้องหรือไม่ทันการ อาจพบว่ามีน้ำหนองซึมรวมอยู่ด้วย นอกจากนี้หากอาการอักเสบเกิดความรุนแรงเพิ่มมากขึ้น อาจส่งผลให้ผู้ป่วยสูญเสียการได้ยินและเกิดภาวะแทรกซ้อนซึ่งเป็นสาเหตุอันนำไปสู่การเกิดโรคอื่น ๆ ในกระบวนการรักษาโรคหูน้ำหนวกจำเป็นต้องมีแพทย์ผู้เชี่ยวชาญทำการวินิจฉัย โดยสอดกล้องออโตสโคปเข้าไปในรูหูเพื่อตรวจสอบ อย่างไรก็ตาม ในขั้นตอนนี้มักพบปัญหาและข้อจำกัดบางประการ เช่น ทักษะและประสบการณ์ของแพทย์ผู้ตรวจอาจไม่ชำนาญพอจะวินิจฉัยได้อย่างถูกต้องแม่นยำ ความพร้อมของเครื่องมือและอุปกรณ์ซึ่ง ในบางครั้งจำเป็นต้องมีการวินิจฉัยเพิ่มด้วยการวัดขนาดแก้วหูหรือการถ่ายภาพ ดังนั้นแล้วในขั้นตอนการรักษานี้สามารถพัฒนาเครื่องมือร่วมกับการประยุกต์ใช้ศาสตร์องค์-ความรู้ทางด้านคอมพิวเตอร์เข้ามาเพื่อแก้ปัญหา รวมทั้งช่วยลดภาระงานของบุคลากรทางการแพทย์ โดยเฉพาะอย่างยิ่งคือการขาดแคลนบุคลากรซึ่งมีไม่เพียงพอต่อปริมาณผู้ป่วย นอกจากนี้เพื่อให้การรักษามีประสิทธิภาพ ยังต้องคำนึงถึงความพร้อมของแพทย์ผู้รักษาซึ่งไม่ใช่เพียงทักษะหรือเครื่องมือ แต่รวมไปถึงสภาพร่างกายที่อาจเกิดจากความเหนื่อยล้าและโอกาสเกิดข้อผิดพลาดจากการวินิจฉัย หัวข้อปัญหาพิเศษนี้จึงได้นำเสนอแนวทางการแก้ไขปัญหาโดยการนำทฤษฎีการเรียนรู้เชิงลึก(Deep Learning) มาประยุกต์ใช้ เพื่อเป็นเครื่องมือช่วยในการจำแนกอาการผิดปกติของโรคหูน้ำหนวกจากภาพถ่ายและภาพเคลื่อนไหว ซึ่งเก็บรวบรวมจากแพทย์ผู้เชี่ยวชาญ ทั้งนี้ ปัจจัยสำคัญที่เป็นจุดสังเกตในการวินิจฉัยโรค ได้แก่ ปริมาณของเหลวในหูชั้นกลาง การหดตัวของเยื่อหูชั้นกลาง สีของของเหลวในหูชั้นกลาง ความโปร่งใสของเยื่อหูชั้นกลาง การทะลุของเยื่อหู และการขยับของเยื่อ-แก้วหูเมื่อเป่าลมทดสอบ ทั้งหมดนี้สามารถนำไปวิเคราะห์และจำแนกเป็นอาการได้ดังนี้ หูปกติ เยื่อ-แก้วหูยุบ เยื่อแก้วหูทะลุ มีของเหลวขังในเยื่อแก้วหู เยื่อแก้วหูอักเสบเฉียบพลัน และหูชั้นกลางทะลุ

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
This research aims to develop an automatic gemstone color sorting machine to overcome the limitations of manual color sorting, which can be restricted by speed and accuracy. This study applies deep learning technology to analyze and classify gemstone colors precisely, developing an algorithm capable of accurately detecting and categorizing color shades. An automated conveyor system was also designed to efficiently transport gemstones through the color sorting process, allowing for continuous operation. The sorting machine works by capturing high-resolution images of the gemstones, processing them with software to classify color shades, and directing each gemstone to its designated position on the automated conveyor. Experimental results demonstrate that the automated color sorting machine, integrated with the conveyor system, achieves high speed and accuracy, significantly reducing labor costs and enhancing the efficiency of gemstone color sorting.

คณะวิศวกรรมศาสตร์
This study was conducted to develop a prototype cooling cover for transporting raw milk, aiming to provide a solution for maintaining the quality of raw milk during transportation to milk collection centers. The cooling cover is made using Phase Change Material (PCM), produced from water mixed with a gelling agent, in an amount of 5.6 kg, attached around an aluminum milk tank (with a capacity of 25 L). The cover is then covered with a UV-reflective fabric in two types: polyvinyl chloride (PVC) and high-density polyethylene (HDPE). The temperature reduction performance of both types of covers was evaluated by measuring water temperatures at various points along the radial and vertical directions of the milk tank at six points, using type-T thermocouples, under three environmental conditions: a constant temperature of 25 °C, 35 °C, and outdoor ambient temperature (average temperature 35.5 °C) for a minimum duration of 180 min. The experimental results revealed that at 120 min., the water in the tank covered with PCM-PVC and PCM-HDPE covers had temperatures lower than the ambient temperature by 12.6 °C and 12.9 °C, respectively, under a constant ambient temperature of 25 °C, and under a constant ambient temperature of 35 °C lower by 16.7 °C and 16.4 °C, respectively, and outdoor conditions. Since the temperature reduction performance of PCM-PVC and PCM-HDPE covers showed no significant difference, the performance of microbial quality preservation of raw milk was assessed only with PCM-PVC cover in comparison to a non-covered case (control), by measuring coliform and Escherichia coli counts using compact dry plates. Results indicated that after 120 min., milk in the tank covered with PCM-PVC had an average coliform count of 1.6 × 10^4 CFU/ml and E. coli count of 2 × 10^3 CFU/ml, which was lower than the non-covered control with an average coliform count of 1.5 × 10^4 CFU/ml and E. coli count of 1.1 × 10^4 CFU/ml. This study concludes that the temperature reduction achieved by the cooling cover can help inhibit coliform growth to levels below raw milk quality standards, demonstrating the potential of the cooling cover in maintaining the quality and safety of raw milk during transport, ultimately contributing to an improved quality of life for Thai dairy farmers.

คณะอุตสาหกรรมอาหาร
The activities of the project's operations consist of: checking microbe on sample food, hygienic condition of cooker, containers and materials, sanitation knowledge and private sanitation and food quality of canteen and cleaning of cooker. The Food Safety Management program collaborated with the Property Management office, planned the operations, and assessed food vendors based on the SAN 20 food safety standards requirements. Using A.13 testing kits, we conducted testing for coliform bacteria contamination in food, containers, equipment, and hand contact surfaces, collecting 6 samples. These included samples such as prepared food, areas in front of the store, and food handlers' hands. Additionally, we used A.11 testing kits to test for coliform bacteria contamination in water and ice. The analysis of results, including physical, microbiological, and chemical aspects, serve as a guideline for improving the quality and safety of food production and service in the institution's canteen.