Otitis Media is an infection of the middle ear that can occur in individuals of all ages. Diagnosis typically involves analyzing images taken with an otoscope by specialized physicians, which relies heavily on medical experience to expedite the process. This research introduces computer vision technology to assist in the preliminary diagnosis, aiding expert decision-making. By utilizing deep learning techniques and convolutional neural networks, specifically the YOLOv8 and Inception v3 architectures, the study aims to classify the disease and its five characteristics used by physicians: color, transparency, fluid, retraction, and perforation. Additionally, image segmentation and classification methods were employed to analyze and predict the types of Otitis Media, which are categorized into four types: Otitis Media with Effusion, Acute Otitis Media with Effusion, Perforation, and Normal. Experimental results indicate that the classification model performs moderately well in directly classifying Otitis Media, with an accuracy of 65.7%, a recall of 65.7%, and a precision of 67.6%. Moreover, the model provides the best results for classifying the perforation characteristic, with an accuracy of 91.8%, a recall of 91.8%, and a precision of 92.1%. In contrast, the classification model that incorporates image segmentation techniques achieved the best overall performance, with an mAP50-95 of 79.63%, a recall of 100%, and a precision of 99.8%. However, this model has not yet been tested for classifying the different types of Otitis Media.
โรคหูน้ำหนวกเป็นโรคที่เกิดจากการอักเสบของหูชั้นกลาง โดยมีอาการปวดหู หูอื้อ และมีน้ำไหลซึมออกมาจากหู ในบางกรณีที่ได้รับการรักษาไม่ถูกต้องหรือไม่ทันการ อาจพบว่ามีน้ำหนองซึมรวมอยู่ด้วย นอกจากนี้หากอาการอักเสบเกิดความรุนแรงเพิ่มมากขึ้น อาจส่งผลให้ผู้ป่วยสูญเสียการได้ยินและเกิดภาวะแทรกซ้อนซึ่งเป็นสาเหตุอันนำไปสู่การเกิดโรคอื่น ๆ ในกระบวนการรักษาโรคหูน้ำหนวกจำเป็นต้องมีแพทย์ผู้เชี่ยวชาญทำการวินิจฉัย โดยสอดกล้องออโตสโคปเข้าไปในรูหูเพื่อตรวจสอบ อย่างไรก็ตาม ในขั้นตอนนี้มักพบปัญหาและข้อจำกัดบางประการ เช่น ทักษะและประสบการณ์ของแพทย์ผู้ตรวจอาจไม่ชำนาญพอจะวินิจฉัยได้อย่างถูกต้องแม่นยำ ความพร้อมของเครื่องมือและอุปกรณ์ซึ่ง ในบางครั้งจำเป็นต้องมีการวินิจฉัยเพิ่มด้วยการวัดขนาดแก้วหูหรือการถ่ายภาพ ดังนั้นแล้วในขั้นตอนการรักษานี้สามารถพัฒนาเครื่องมือร่วมกับการประยุกต์ใช้ศาสตร์องค์-ความรู้ทางด้านคอมพิวเตอร์เข้ามาเพื่อแก้ปัญหา รวมทั้งช่วยลดภาระงานของบุคลากรทางการแพทย์ โดยเฉพาะอย่างยิ่งคือการขาดแคลนบุคลากรซึ่งมีไม่เพียงพอต่อปริมาณผู้ป่วย นอกจากนี้เพื่อให้การรักษามีประสิทธิภาพ ยังต้องคำนึงถึงความพร้อมของแพทย์ผู้รักษาซึ่งไม่ใช่เพียงทักษะหรือเครื่องมือ แต่รวมไปถึงสภาพร่างกายที่อาจเกิดจากความเหนื่อยล้าและโอกาสเกิดข้อผิดพลาดจากการวินิจฉัย หัวข้อปัญหาพิเศษนี้จึงได้นำเสนอแนวทางการแก้ไขปัญหาโดยการนำทฤษฎีการเรียนรู้เชิงลึก(Deep Learning) มาประยุกต์ใช้ เพื่อเป็นเครื่องมือช่วยในการจำแนกอาการผิดปกติของโรคหูน้ำหนวกจากภาพถ่ายและภาพเคลื่อนไหว ซึ่งเก็บรวบรวมจากแพทย์ผู้เชี่ยวชาญ ทั้งนี้ ปัจจัยสำคัญที่เป็นจุดสังเกตในการวินิจฉัยโรค ได้แก่ ปริมาณของเหลวในหูชั้นกลาง การหดตัวของเยื่อหูชั้นกลาง สีของของเหลวในหูชั้นกลาง ความโปร่งใสของเยื่อหูชั้นกลาง การทะลุของเยื่อหู และการขยับของเยื่อ-แก้วหูเมื่อเป่าลมทดสอบ ทั้งหมดนี้สามารถนำไปวิเคราะห์และจำแนกเป็นอาการได้ดังนี้ หูปกติ เยื่อ-แก้วหูยุบ เยื่อแก้วหูทะลุ มีของเหลวขังในเยื่อแก้วหู เยื่อแก้วหูอักเสบเฉียบพลัน และหูชั้นกลางทะลุ

คณะวิทยาศาสตร์
Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.

คณะเทคโนโลยีการเกษตร
This study aimed to evaluate the optimal edible coating formulation for 'Namdokmai Sithong' mangoes by incorporating 10% gum arabic (GA) with mangosteen peel extract (MPE) at varying concentrations (1%, 3%, and 5%), compared to a control treatment (distilled water). The coated fruits were stored at room temperature for 14 days, and their physicochemical properties were assessed. The findings indicate that the application of GA (10%) combined with MPE effectively mitigated color changes in mango flesh, suppressed disease incidence, and preserved fruit firmness. Additionally, the coating significantly delayed alterations in total soluble solids (TSS), titratable acidity (TA), vitamin C content, carotenoid levels, and phenolic compounds. Among the tested formulations, GA (10%) + MPE (1%) exhibited the highest efficacy in extending shelf life, maintaining fruit quality, and enhancing surface gloss.

คณะวิศวกรรมศาสตร์
Stirling engine is the external heated engine that heat is sup-plied externally to the heater part of the engine. Thus, Stirling cycle engine can be employed with various sources of renewable energy such as biomass, biofuel, solar energy, geothermal energy, recovery heat, and waste. The integration of gasifier, burner, and heat engine as a power system offers more fuel choices of each local area with potential resources resulting independent from shortage and cost fluctuation of fossil fuel. This research aims to investigate the integration of the Stirling engine with a wood pellet gasifier for electric power generation. Biomass can be controlled to have continuously combustion with ultra-low toxic emission. Stirling engine, therefore, is a promising alternative in small-scale-electricity production. Even though many biomass-powered Stirling engines were successfully constructed and marketed but these engines and the use of biomass resources as fuel for power generation are quite new concepts in some developing countries. Especially, the capital cost of this engine is high and unaffordable for installation compared to other power systems. Therefore, this research aims to the study attractive and feasibility of the compact Stirling engine with green energy.