โรคหูชั้นกลางอักเสบ เกิดจากการที่ผู้ป่วยติดเชื้อโรคในหูชั้นกลาง ซึ่งสามารถพบได้ในทุกเพศทุกวัย อย่างไรก็ดี การวินิจฉัยสามารถทำได้โดยการนำภาพถ่ายจากกล้องออโตสโคปมาวิเคราะห์โดยแพทย์ผู้เชี่ยวชาญ แต่กระนั้น จำต้องอาศัยประสบการณ์ทางการแพทย์เพื่อลดทอนระยะเวลาในการวินิจฉัย ดังนั้น งานวิจัยนี้จึงนำเสนอเทคโนโลยีทางคอมพิวเตอร์วิทัศน์ มาประยุกต์ใช้เพื่อวินิจฉัยโรคเบื้องต้นประกอบการตัดสินใจให้กับแพทย์ผู้เชี่ยวชาญ โดยใช้เทคนิคการเรียนรู้เชิงลึก และโครงข่ายประสาทเทียมแบบคอนโวลูชัน อย่างสถาปัตยกรรม YOLOv8 และ Inception v3 เพื่อจำแนกประเภทของโรค และคุณลักษณะของโรคหูชั้นกลางอักเสบทั้ง 5 อย่างที่แพทย์ใช้ในการพิจารณาประเภทของโรคอันได้แก่ สี ความโปร่งใส ของเหลว การหดตัว และการทะลุ นอกจากนี้ ยังใช้วิธีการแบ่งส่วนรูปภาพ และการจำแนกประเภทรูปภาพในการวิเคราะห์และทำนายประเภทของโรคหูชั้นกลางอักเสบ ซึ่งสามารถแบ่งประเภทของโรคได้สี่ประเภท คือ โรคหูชั้นกลางอักเสบแบบมีน้ำขัง แบบเฉียบพลัน โรคหูชั้นกลางทะลุ และแก้วหูปกติ ผลการทดลองพบว่าโมเดลจำแนกประเภทสามารถจำแนกประเภทของโรคหูชั้นกลางอักเสบโดยตรงได้ดีพอประมาณ โดยผลลัพธ์ค่า Accuracy อยู่ที่ 65.7% ค่า Recall อยู่ที่ 65.7% และค่า Precision อยู่ที่ 67.6% และนอกจากนี้ยังให้ผลลัพธ์สำหรับการจำแนกคำตอบของคุณลักษณะหูทะลุได้ดีที่สุด โดยผลลัพธ์ค่า Accuracy อยู่ที่ 91.8% ค่า Recall อยู่ที่ 91.8% และค่า Precision อยู่ที่ 92.1% ในขณะที่โมเดลจำแนกซึ่งมีการประยุกต์ใช้เทคนิคการแบ่งส่วนรูปภาพมีประสิทธิภาพดีที่สุดโดยภาพรวม มีค่า mAP50-95 อยู่ที่ 79.63% ค่า Recall อยู่ที่ 100% และค่า Precision อยู่ที่ 99.8% ทั้งนี้ โมเดลดังกล่าวยังไม่ได้ถูกนำไปทดสอบการจำแนกประเภทของโรคหูชั้นกลางอักเสบ
โรคหูน้ำหนวกเป็นโรคที่เกิดจากการอักเสบของหูชั้นกลาง โดยมีอาการปวดหู หูอื้อ และมีน้ำไหลซึมออกมาจากหู ในบางกรณีที่ได้รับการรักษาไม่ถูกต้องหรือไม่ทันการ อาจพบว่ามีน้ำหนองซึมรวมอยู่ด้วย นอกจากนี้หากอาการอักเสบเกิดความรุนแรงเพิ่มมากขึ้น อาจส่งผลให้ผู้ป่วยสูญเสียการได้ยินและเกิดภาวะแทรกซ้อนซึ่งเป็นสาเหตุอันนำไปสู่การเกิดโรคอื่น ๆ ในกระบวนการรักษาโรคหูน้ำหนวกจำเป็นต้องมีแพทย์ผู้เชี่ยวชาญทำการวินิจฉัย โดยสอดกล้องออโตสโคปเข้าไปในรูหูเพื่อตรวจสอบ อย่างไรก็ตาม ในขั้นตอนนี้มักพบปัญหาและข้อจำกัดบางประการ เช่น ทักษะและประสบการณ์ของแพทย์ผู้ตรวจอาจไม่ชำนาญพอจะวินิจฉัยได้อย่างถูกต้องแม่นยำ ความพร้อมของเครื่องมือและอุปกรณ์ซึ่ง ในบางครั้งจำเป็นต้องมีการวินิจฉัยเพิ่มด้วยการวัดขนาดแก้วหูหรือการถ่ายภาพ ดังนั้นแล้วในขั้นตอนการรักษานี้สามารถพัฒนาเครื่องมือร่วมกับการประยุกต์ใช้ศาสตร์องค์-ความรู้ทางด้านคอมพิวเตอร์เข้ามาเพื่อแก้ปัญหา รวมทั้งช่วยลดภาระงานของบุคลากรทางการแพทย์ โดยเฉพาะอย่างยิ่งคือการขาดแคลนบุคลากรซึ่งมีไม่เพียงพอต่อปริมาณผู้ป่วย นอกจากนี้เพื่อให้การรักษามีประสิทธิภาพ ยังต้องคำนึงถึงความพร้อมของแพทย์ผู้รักษาซึ่งไม่ใช่เพียงทักษะหรือเครื่องมือ แต่รวมไปถึงสภาพร่างกายที่อาจเกิดจากความเหนื่อยล้าและโอกาสเกิดข้อผิดพลาดจากการวินิจฉัย หัวข้อปัญหาพิเศษนี้จึงได้นำเสนอแนวทางการแก้ไขปัญหาโดยการนำทฤษฎีการเรียนรู้เชิงลึก(Deep Learning) มาประยุกต์ใช้ เพื่อเป็นเครื่องมือช่วยในการจำแนกอาการผิดปกติของโรคหูน้ำหนวกจากภาพถ่ายและภาพเคลื่อนไหว ซึ่งเก็บรวบรวมจากแพทย์ผู้เชี่ยวชาญ ทั้งนี้ ปัจจัยสำคัญที่เป็นจุดสังเกตในการวินิจฉัยโรค ได้แก่ ปริมาณของเหลวในหูชั้นกลาง การหดตัวของเยื่อหูชั้นกลาง สีของของเหลวในหูชั้นกลาง ความโปร่งใสของเยื่อหูชั้นกลาง การทะลุของเยื่อหู และการขยับของเยื่อ-แก้วหูเมื่อเป่าลมทดสอบ ทั้งหมดนี้สามารถนำไปวิเคราะห์และจำแนกเป็นอาการได้ดังนี้ หูปกติ เยื่อ-แก้วหูยุบ เยื่อแก้วหูทะลุ มีของเหลวขังในเยื่อแก้วหู เยื่อแก้วหูอักเสบเฉียบพลัน และหูชั้นกลางทะลุ
คณะวิทยาศาสตร์
ผู้ป่วยโรคภูมิแพ้ผิวหนังมีจำนวนมากเป็นอันดับที่สอง ในจำนวนผู้ป่วยโรคผิวหนัง ซึ่งโรคภูมิแพ้ผิวหนังนี้ยังไม่มียารักษา ทำได้แค่บรรเทารักษาตามอาการ ทำให้เกิดเป็นโรคเรื้อรัง มีโอกาสที่เชื้อฉวยโอกาสจะเข้าไปก่อโรคเพิ่มจากแผลของผู้ป่วย ทำให้ผู้ป่วยมีอาการแทรกซ้อนจากการติดเชื้อชนิดอื่น การศึกษาในครั้งนี้จึงสนใจศึกษาการลดโอกาสในการติดเชื้อฉวยโอกาสในผู้ป่วยโรคภูมิแพ้ผิวหนัง โดยใช้สารสกัดจากธรรมชาติ ซึ่งสนใจใบพลูคาวและดีปลี เนื่องจากมีข้อมูลสนับสนุนเรื่องการยับยั้งเชื้อจุลินทรีย์ โดยการนำใบของพืชทั้ง 2 ชนิด มาสกัดแบบหยาบ แช่ใน ethanol 95% เป็นเวลา 7 วัน กรองด้วยกรวยกรอง buchner นำสารสกัดที่ได้ไปทดสอบ phytochemical เพื่อวิเคราะห์องค์ประกอบ phenolic, flavonoid, tannin, anthocyanin, DPPH และนำไปทดสอบฤทธิ์ในการต้านจุลชีพ ซึ่งในการทดลองประกอบด้วยแบบคทีเรียแกรมบวกและแกรมลบ 5 ชนิด ได้แก่ E. coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis โดยผู้ทำการวิจัยคาดว่าจะสามารถนำไปต่อยอดและนำไปพัฒนาในการรักษาผู้ป่วยโรคภูมิแพ้ผิวหนังได้
คณะวิศวกรรมศาสตร์
โครงการสหกิจนี้มีวัตถุประสงค์เพื่อปรับปรุงประสิทธิภาพกระบวนการผลิต Hydrogen Manufacturing Unit 2 (HMU-2) และ Pressure Swing Adsorption 3 (PSA-3) โดยการใช้แบบจำลองกระบวนการ AVEVA Pro/II และ แบบจำลอง Machine Learning เพื่อจำลองกระบวนการ ผลการศึกษาพบว่า แบบจำลอง AVEVA Pro/II สามารถทำนายผลลัพธ์ โดยมีความคลาดเคลื่อนอยู่ในช่วง 0–35% มีความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA สูงถึง 12% เกินเกณฑ์ 10% ที่บริษัทยอมรับได้ จึงได้พัฒนาแบบจำลอง Machine Learning โดยการปรับไฮเปอร์พารามิเตอร์ของอัลกอริทึมแบบ Random Forest ผลการศึกษาพบว่าแบบจำลองมีความแม่นยำสูง มีค่า Mean Squared Error (MSE) มีค่า 8.48 และ 0.18 สำหรับข้อมูลกระบวนการ และ ข้อมูลห้องปฏิบัติการ และ R-squared มีค่า 0.98 และ 0.88 สำหรับข้อมูลชุดเดียวกัน และพบว่าสามารถทำนายผลลัพธ์ได้แม่นยำกว่าแบบจำลอง AVEVA Pro/II ในทุกๆ ตัวแปร สามารถลดความคลาดเคลื่อนของอัตราการไหลของไฮโดรเจนจากหน่วย PSA เหลือเพียง 4.75 และ 1.35% สำหรับอัตราการผลิต 180 และ 220 ตันต่อวันตามลำดับ จึงได้นำแบบจำลองมาทำการ Optimization ตัวแปรกระบวนการ พบว่าสามารถให้ข้อแนะนำในการปรับค่าตัวแปรต่างๆ ได้ โดยสามารถเพิ่มผลผลิตไฮโดรเจนได้ 7.8 ตันต่อวัน และสร้างผลกำไรเพิ่มขึ้น 850,966.23 บาทต่อปี
คณะวิศวกรรมศาสตร์
โครงงานนี้นำเสนอการพัฒนาแชทบอทปัญญาประดิษฐ์ (AI) ที่ออกแบบมาเพื่อจัดการกับช่องโหว่ด้านความปลอดภัยทางไซเบอร์ โดยเฉพาะอย่างยิ่งที่เกี่ยวข้องกับ Common Vulnerabilities and Exposure (CVE) และระบบ Common Vulnerability Scoring System (CVSS) โครงงานนี้มีศักยภาพในการปรับปรุงแนวปฏิบัติด้านความปลอดภัยทางไซเบอร์อย่างมีประสิทธิภาพ โดยการมีเครื่องมือที่เข้าถึงได้ง่ายและให้ข้อมูลสำหรับการทำความเข้าใจและลดความเสี่ยงจากช่องโหว่