KMITL Innovation Expo 2025 Logo

Café Customer Classification and Behavioral Analysis

Abstract

In a highly competitive business, understanding customers is crucial for an organization to determine its success. Effective marketing is not just about offering good products, promotions, or services; it also requires strategies to reach and build strong relationships with customer groups. Segmenting customers is one method that helps businesses deeply understand the needs and behaviors of the customers who use their services In this internship, the objective is to understand the behavior of customers purchasing coffee and tea at a large cafe group by analyzing stored customer data. As a result of this process, customer groups purchasing coffee and tea were segmented using Naive Bayes, Random Forest, and Deep Learning techniques to compare the accuracy and suitability of different Machine Learning methods, and the insights gained from this analysis can be for further development in analyzing other data set in the future

Objective

กาแฟและชา เป็นเครื่องดื่มที่ได้รับความนิยมอย่างมาก ทั้งชาและกาแฟมีประโยชน์ต่อสุขภาพ ใช้ดื่มเพื่อผ่อนคลาย ชาเป็นเครื่องดื่มที่ทำให้ผ่อนคลายจากการทำกิจกรรมมาทั้งวัน ในขณะเดียวกัน กาแฟเป็นตัวช่วยเพิ่มพลังงาน และพลังสมองก่อนที่จะทำกิจวัตรใดๆ อีกทั้งยังเป็นตัวเชื่อมความสัมพันธ์ระหว่างมนุษย์ ดังนั้น การมองหาร้านกาแฟที่มีเครื่องดื่มที่เข้มข้น สินค้าที่หลากหลาย ยังต้องมีพื้นที่สังสรรค์ พบประผู้คน ซึ่งในนั้นก็คือ ร้านกาแฟพันธุ์ไทย ซึ่งเป็นแบรนด์กาแฟ ที่มีทั้งเครื่องดื่ม ขนมปัง เบเกอรี่ และอาหารหลากหลาย ทำให้มีกลุ่มลูกค้าที่เข้ามาใช้บริการเป็นจำนวนมาก และลักษณะการซื้อเครื่องดื่มและสินค้าที่แตกต่างกัน จากเหตุผลดังกล่าว ทำให้ทีมธุรกิจอัจฉริยะ (Business Intelligence - BI) กลุ่มธุรกิจอาหารและเครื่องดื่ม มีความสนใจที่จะจัดกลุ่มลูกค้าของร้านกาแฟพันธุ์ไทย ข้าพเจ้าจึงมีแนวคิดที่จะจำแนกและวิเคราะห์พฤติกรรมลูกค้า แบ่งออกเป็น 3 กลุ่ม ได้แก่ ลูกค้าที่ซื้อเครื่องดื่มประเภทกาแฟเป็นประจำ ลูกค้าที่ซื้อเครื่องดื่มประเภทชา และลูกค้าที่ซื้อเครื่องดื่มทั้งชาและกาแฟ โดยการใช้ Naive Bayes, Random Forest, Deep Learning เปรียบเทียบเทคนิค ที่มีความแม่นยำและเหมาะสม เพื่อนำข้อมูลที่วิเคราะห์ได้ไปใช้ประโยชน์ต่อไป

Other Innovations

Albumin Smart Test : Innovative device for screening of kidney disease by mobile phone

คณะวิทยาศาสตร์

Albumin Smart Test : Innovative device for screening of kidney disease by mobile phone

Albumin Smart Test is an innovative device for screening of kidney disease by mobile phone. The device composes of (1) container and testing device with specific reagents for the albumin detection. (2) The mobile phone, installed with "Albumin smart test" application. The test is started by dropping patient urine and the reagent. Color of the product is occurred and is captured by the application with subsequent evaluation of the albumin amount. The results is displayed on screen within 3 mins. This innovative device is simple, rapid and user-friendly.

Read more
Crispy Rice Berry Waffle

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

Crispy Rice Berry Waffle

Crispy Rice-berry Snack is a product made from broken rice-berry rice that has been processed into a snack that is thin and crispy, bite-sized. Broken rice-berry rice is cooked, finely ground, and mixed with other ingredients to increase its nutritional value, such as adding plant seeds, adding plant protein nutrients, and then forming it into sheets using heat. The resulting product is a thin sheet, purple-brown in color, crispy, and has the smell of the ingredients used in the production process. It does not contain sugar or sweeteners. It is used as a snack with tea or coffee. Crispy Rice-berry Waffle is a product that contains complete nutrients, including carbohydrates, protein, and fat, which are derived from the ingredients in the production formula.

Read more
Agricultural equipment propulsion system using RFID technology

วิทยาเขตชุมพรเขตรอุดมศักดิ์

Agricultural equipment propulsion system using RFID technology

This project aims to design and develop a propulsion system for agricultural equipment using RFID technology and evaluate its movement performance on different surfaces, including concrete and grass. The experiment focuses on examining the tag detection range under transmission power levels of 20 dBm, 23 dBm, and 26 dBm, as well as the impact of antenna angles on detection efficiency. Additionally, the system was tested in three movement scenarios: straight path, left turn, and right turn, at distances of 2 meters, 4 meters, and 6 meters. The results indicate that the system achieved the highest average speed of 0.4736 m/s and an average turning angle of 91.6° when moving in a straight path on a concrete surface at a distance of 4 meters. On a grass surface at the same distance, the average speed was 0.4483 m/s, with an average turning angle of 91.1°. For left and right turns, the movement on the concrete surface generally exhibited a higher average speed than on grass, particularly at a distance of 4 meters, where differences in turning angles were observed. This study provides insights into the factors affecting the movement of agricultural mowing equipment and serves as a foundation for enhancing the efficiency of propulsion systems in future developments.

Read more