In a highly competitive business, understanding customers is crucial for an organization to determine its success. Effective marketing is not just about offering good products, promotions, or services; it also requires strategies to reach and build strong relationships with customer groups. Segmenting customers is one method that helps businesses deeply understand the needs and behaviors of the customers who use their services In this internship, the objective is to understand the behavior of customers purchasing coffee and tea at a large cafe group by analyzing stored customer data. As a result of this process, customer groups purchasing coffee and tea were segmented using Naive Bayes, Random Forest, and Deep Learning techniques to compare the accuracy and suitability of different Machine Learning methods, and the insights gained from this analysis can be for further development in analyzing other data set in the future
กาแฟและชา เป็นเครื่องดื่มที่ได้รับความนิยมอย่างมาก ทั้งชาและกาแฟมีประโยชน์ต่อสุขภาพ ใช้ดื่มเพื่อผ่อนคลาย ชาเป็นเครื่องดื่มที่ทำให้ผ่อนคลายจากการทำกิจกรรมมาทั้งวัน ในขณะเดียวกัน กาแฟเป็นตัวช่วยเพิ่มพลังงาน และพลังสมองก่อนที่จะทำกิจวัตรใดๆ อีกทั้งยังเป็นตัวเชื่อมความสัมพันธ์ระหว่างมนุษย์ ดังนั้น การมองหาร้านกาแฟที่มีเครื่องดื่มที่เข้มข้น สินค้าที่หลากหลาย ยังต้องมีพื้นที่สังสรรค์ พบประผู้คน ซึ่งในนั้นก็คือ ร้านกาแฟพันธุ์ไทย ซึ่งเป็นแบรนด์กาแฟ ที่มีทั้งเครื่องดื่ม ขนมปัง เบเกอรี่ และอาหารหลากหลาย ทำให้มีกลุ่มลูกค้าที่เข้ามาใช้บริการเป็นจำนวนมาก และลักษณะการซื้อเครื่องดื่มและสินค้าที่แตกต่างกัน จากเหตุผลดังกล่าว ทำให้ทีมธุรกิจอัจฉริยะ (Business Intelligence - BI) กลุ่มธุรกิจอาหารและเครื่องดื่ม มีความสนใจที่จะจัดกลุ่มลูกค้าของร้านกาแฟพันธุ์ไทย ข้าพเจ้าจึงมีแนวคิดที่จะจำแนกและวิเคราะห์พฤติกรรมลูกค้า แบ่งออกเป็น 3 กลุ่ม ได้แก่ ลูกค้าที่ซื้อเครื่องดื่มประเภทกาแฟเป็นประจำ ลูกค้าที่ซื้อเครื่องดื่มประเภทชา และลูกค้าที่ซื้อเครื่องดื่มทั้งชาและกาแฟ โดยการใช้ Naive Bayes, Random Forest, Deep Learning เปรียบเทียบเทคนิค ที่มีความแม่นยำและเหมาะสม เพื่อนำข้อมูลที่วิเคราะห์ได้ไปใช้ประโยชน์ต่อไป
คณะเทคโนโลยีสารสนเทศ
KinderForest : Puzzle Building Game with VR Technology is designed to utilize Virtual Reality (VR) technology with the primary aim of promoting creative problem-solving skills and basic practical application abilities among players. This project presents the game in an Augmented Virtual Reality (AR VR) format, emphasizing physical engagement of players during gameplay while fostering creativity and fundamental application skills. The project team has chosen to utilize Unreal Engine 5.1 and Oculus Quest 2 virtual reality glasses to develop the game in the form of augmented virtual reality technology. Within the game, there will be various levels that require creative thinking and different approaches to pass. Time constraints will be a crucial element in completing missions and progressing through these levels. Players will physically move their bodies in response to in-game movements. Each level will present unique challenges that will necessitate both physical movement and problem-solving skills. The game will provide different rewards based on the outcomes of mission completion, and players will be informed of their results once they have successfully passed a level.
คณะวิทยาศาสตร์
This special problem aims to study and compare the performance of predicting the air quality index (AQI) using five ensemble machine learning methods: random forest, XGBoost, CatBoost, stacking ensemble of random forest and XGBoost, and stacking ensemble of random forest, SVR, and MLP. The study uses a dataset from the Central Pollution Control Board of India (CPCB), which includes fifteen pollutants and nine meteorological variables collected between January, 2021 and December, 2023. In this study, there were 1,024,920 records. The performance is measured using three methods: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination. The study found that the random forest and XGBoost stacking ensemble had the best performance measures among the three methods, with the minimum RMSE of 0.1040, the minimum MAE of 0.0675, and the maximum of 0.8128. SHAP-based model interpretation method for five machine learning methods. All methods reached the same conclusion: the two variables that most significantly impacted the global prediction were PM2.5 and PM10, respectively.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
Durian is an important economic crop in Thailand that is affected by foliar diseases such as rust, leaf blight, and leaf spot. These diseases reduce the quality of the yield and increase management costs. This research focuses on developing AI software for screening durian leaf diseases by applying deep learning technology to classify different types of leaf lesions.