In a highly competitive business, understanding customers is crucial for an organization to determine its success. Effective marketing is not just about offering good products, promotions, or services; it also requires strategies to reach and build strong relationships with customer groups. Segmenting customers is one method that helps businesses deeply understand the needs and behaviors of the customers who use their services In this internship, the objective is to understand the behavior of customers purchasing coffee and tea at a large cafe group by analyzing stored customer data. As a result of this process, customer groups purchasing coffee and tea were segmented using Naive Bayes, Random Forest, and Deep Learning techniques to compare the accuracy and suitability of different Machine Learning methods, and the insights gained from this analysis can be for further development in analyzing other data set in the future
กาแฟและชา เป็นเครื่องดื่มที่ได้รับความนิยมอย่างมาก ทั้งชาและกาแฟมีประโยชน์ต่อสุขภาพ ใช้ดื่มเพื่อผ่อนคลาย ชาเป็นเครื่องดื่มที่ทำให้ผ่อนคลายจากการทำกิจกรรมมาทั้งวัน ในขณะเดียวกัน กาแฟเป็นตัวช่วยเพิ่มพลังงาน และพลังสมองก่อนที่จะทำกิจวัตรใดๆ อีกทั้งยังเป็นตัวเชื่อมความสัมพันธ์ระหว่างมนุษย์ ดังนั้น การมองหาร้านกาแฟที่มีเครื่องดื่มที่เข้มข้น สินค้าที่หลากหลาย ยังต้องมีพื้นที่สังสรรค์ พบประผู้คน ซึ่งในนั้นก็คือ ร้านกาแฟพันธุ์ไทย ซึ่งเป็นแบรนด์กาแฟ ที่มีทั้งเครื่องดื่ม ขนมปัง เบเกอรี่ และอาหารหลากหลาย ทำให้มีกลุ่มลูกค้าที่เข้ามาใช้บริการเป็นจำนวนมาก และลักษณะการซื้อเครื่องดื่มและสินค้าที่แตกต่างกัน จากเหตุผลดังกล่าว ทำให้ทีมธุรกิจอัจฉริยะ (Business Intelligence - BI) กลุ่มธุรกิจอาหารและเครื่องดื่ม มีความสนใจที่จะจัดกลุ่มลูกค้าของร้านกาแฟพันธุ์ไทย ข้าพเจ้าจึงมีแนวคิดที่จะจำแนกและวิเคราะห์พฤติกรรมลูกค้า แบ่งออกเป็น 3 กลุ่ม ได้แก่ ลูกค้าที่ซื้อเครื่องดื่มประเภทกาแฟเป็นประจำ ลูกค้าที่ซื้อเครื่องดื่มประเภทชา และลูกค้าที่ซื้อเครื่องดื่มทั้งชาและกาแฟ โดยการใช้ Naive Bayes, Random Forest, Deep Learning เปรียบเทียบเทคนิค ที่มีความแม่นยำและเหมาะสม เพื่อนำข้อมูลที่วิเคราะห์ได้ไปใช้ประโยชน์ต่อไป

วิทยาเขตชุมพรเขตรอุดมศักดิ์
-

คณะวิทยาศาสตร์
This research focuses on the fabrication of graphene oxide (GO) composite membranes using the Phase-Inversion Method, which transforms polymers from liquid to solid through phase separation. This process creates a porous membrane structure, making it highly adaptable, cost-effective, and suitable for wastewater treatment, separation processes, and industrial filtration applications. Graphene oxide, with its nano-layered structure, offers excellent molecular sieving properties, high water permeability, and chemical and mechanical stability, making it an ideal additive for membrane fabrication. The GO-based membrane demonstrates efficient removal of nanoparticles, heavy metal ions (Pb²⁺, Cr⁶⁺, Hg²⁺), organic pollutants, and microorganisms while exhibiting antifouling properties and high hydrophilicity due to oxygen-functional groups. Applications of this membrane include industrial wastewater treatment, desalination, and the removal of pharmaceutical contaminants, such as antibiotics and hormones. The incorporation of GO enhances membrane performance, providing a sustainable and energy-efficient solution for water purification.

คณะเทคโนโลยีการเกษตร
Supplementing broilers with different levels of fructooligosaccharides (FOS) under stress conditions, such as higher stocking densities and recycled litter that were not a significant difference in broiler performance, carcass quality and meat quality between the FOS-supplemented groups and the control group (p>0.05). FOS supplementation improved intestinal health by increasing the villus height to crypt depth ratio Lactobacillus populations increased, and Escherichia coli decreased with FOS supplementation. The heterophil-to-lymphocyte ratio was reduced which indicated lower stress.