
Crispy Rice-berry Snack is a product made from broken rice-berry rice that has been processed into a snack that is thin and crispy, bite-sized. Broken rice-berry rice is cooked, finely ground, and mixed with other ingredients to increase its nutritional value, such as adding plant seeds, adding plant protein nutrients, and then forming it into sheets using heat. The resulting product is a thin sheet, purple-brown in color, crispy, and has the smell of the ingredients used in the production process. It does not contain sugar or sweeteners. It is used as a snack with tea or coffee. Crispy Rice-berry Waffle is a product that contains complete nutrients, including carbohydrates, protein, and fat, which are derived from the ingredients in the production formula.
เป็นการเพิ่มมูลค่าใหักับข้าวหักไรซ์เบอร์ โดยนำมาแปรรูปเป็นผลิตภัณฑ์อาหารที่รับประทานได้ง่าย

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Smart Agriculture has rapidly developed in recent years, particularly with the integration of robotics and automation technologies to improve production efficiency and reduce costs, thereby enhancing the quality of current agricultural practices. A key innovation in this area is the rail-based robotic arm, designed to enhance work efficiency using a rail system with high precision and effectiveness. The application of this robotic arm covers various processes, such as planting, sorting, maintenance, harvesting, and resource management, allowing continuous operation and reducing human labor in repetitive and high-risk tasks. Studies have shown that the use of rail-based robotic arms in agriculture can significantly improve work efficiency, reduce production costs, and effectively mitigate environmental impact. By using robots in agricultural processes, it is possible to reduce contamination, lower the risk of crop damage, and make agriculture more sustainable. Additionally, it can increase accuracy in operations on limited spaces or farms with diverse crops. From these findings, it can be concluded that adopting rail-based robotic arm technology in agriculture not only enhances long-term production efficiency but also promotes sustainable agriculture and maximizes resource use, meeting future agricultural demands

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
The objective of this research is to utilize waste slag in industrial applications and help mitigate flooding, water accumulation, and ponding issues. Currently, slag from the steel smelting or refining process is commonly used as a component in construction materials, such as road surfaces. However, slag has properties that make it difficult for water to permeate, leading to poor drainage and increased flooding problems. This study focuses on improving the properties of pavement materials to enhance their strength and water permeability. This can be achieved through physical structural modifications or the addition of chemical agents such as HPMC, which increases void spaces to facilitate water absorption and drainage according to required standards. The utilization of waste slag not only helps reduce production costs and improve material performance but also minimizes environmental impacts and promotes the sustainable use of resources.

คณะเทคโนโลยีการเกษตร
Dwarf whipray (Brevitrygon heterura) is a common species found in a local market in the Gulf of Thailand. However, like many other species of stingrays, it is threatened by overfishing and habitat destruction. Therefore, an accurate species identification is crucial because conservation efforts may vary depending on the species. This study aims to understand morphological variation of B. heterura in the Gulf of Thailand by morphometric study and genetic analysis. During October 2022 and February 2023, we obtained 49 samples from research vessels fish landing ports and local fish markets. We observed two distinct groups based on 43 morphological variables/ratios. B. heterura samples from Chanthaburi, Rayong, Chonburi, Samut Sakhon, Nakhon Si Thammarat and Songkla provinces, called “group A," typically have longer snout length than those from Prachuap Khiri Khan provinces, called “group B" according to external morphological characters for species identification. Three morphological variables/ratios were significantly different between groups A and B. Main characters to explain intraspecific variations between group A and group B are further discussed. DNA barcoding based on a fragment of the cytochrome c oxidase subunit I (COI) gene were obtain from eight samples of group A and eight samples from group B. Pairwise percent sequence divergence (p-distance) for COI between group A and group B were 0.0-2.5. This study contributes to the understanding of variations of morphology and genetics of B. heterura in the Gulf of Thailand.