โลกธุรกิจในปัจจุบันมีการแข่งขันสูง การทำความเข้าใจลูกค้าเป็นสิ่งที่สำคัญที่สามารถทำให้องค์กรกำหนดความสำเร็จได้ การตลาดที่มีประสิทธิภาพไม่ใช่เพียงแค่การเสนอสินค้า โปรโมชั่น หรือบริการที่ดีเท่านั้น แต่ยังต้องมีกลยุทธ์ในการเข้าถึงและสร้างความสัมพันธ์ที่ดีกับกลุ่มลูกค้า การจัดกลุ่มลูกค้าเป็นหนึ่งในวิธีการที่จะช่วยให้ธุรกิจสามารถเจาะลึกความต้องการและพฤติกรรมของกลุ่มลูกค้าที่เข้ามาใช้บริการได้อย่างชัดเจน จากการปฎิบัติสหกิจศึกษาในครั้งนี้ ผู้ปฏิบัติได้รับมอบหมายให้ปฏิบัติงานใน ทีมธุรกิจอัจฉริยะ (Business Intelligence - BI) กลุ่มธุรกิจอาหารและเครื่องดื่ม ได้ทำหน้าที่วิเคราะห์ข้อมูลของกลุ่มลูกค้าของร้านกาแฟพันธุ์ไทยเกี่ยวกับลักษณะของลูกค้าที่เข้ามาใช้บริการในร้านกาแฟพันธุ์ไทย การปฏิบัติงานสหกิจครั้งนี้ มีวัตถุประสงค์ในการที่จะเข้าใจพฤติกรรมของลูกค้าที่เข้ามาซื้อเครื่องดื่มประเภทกาแฟและชาในร้านกาแฟพันธุ์ไทย โดยการวิเคราะห์ข้อมูลของลูกค้าที่มีการจัดเก็บไว้ ซึ่งผลจากการดำเนินได้มีการจัดกลุ่มลูกค้าที่เข้ามาซื้อเครื่องดื่มประเภทกาแฟและชา โดยการใช้ Naive Bayes, Random Forest, Deep Learning เปรียบเทียบเทคนิคที่มีความแม่นยำและเหมาะสม เพื่อนำข้อมูลที่วิเคราะห์ได้ไปใช้ประโยชน์ต่อไป
กาแฟและชา เป็นเครื่องดื่มที่ได้รับความนิยมอย่างมาก ทั้งชาและกาแฟมีประโยชน์ต่อสุขภาพ ใช้ดื่มเพื่อผ่อนคลาย ชาเป็นเครื่องดื่มที่ทำให้ผ่อนคลายจากการทำกิจกรรมมาทั้งวัน ในขณะเดียวกัน กาแฟเป็นตัวช่วยเพิ่มพลังงาน และพลังสมองก่อนที่จะทำกิจวัตรใดๆ อีกทั้งยังเป็นตัวเชื่อมความสัมพันธ์ระหว่างมนุษย์ ดังนั้น การมองหาร้านกาแฟที่มีเครื่องดื่มที่เข้มข้น สินค้าที่หลากหลาย ยังต้องมีพื้นที่สังสรรค์ พบประผู้คน ซึ่งในนั้นก็คือ ร้านกาแฟพันธุ์ไทย ซึ่งเป็นแบรนด์กาแฟ ที่มีทั้งเครื่องดื่ม ขนมปัง เบเกอรี่ และอาหารหลากหลาย ทำให้มีกลุ่มลูกค้าที่เข้ามาใช้บริการเป็นจำนวนมาก และลักษณะการซื้อเครื่องดื่มและสินค้าที่แตกต่างกัน จากเหตุผลดังกล่าว ทำให้ทีมธุรกิจอัจฉริยะ (Business Intelligence - BI) กลุ่มธุรกิจอาหารและเครื่องดื่ม มีความสนใจที่จะจัดกลุ่มลูกค้าของร้านกาแฟพันธุ์ไทย ข้าพเจ้าจึงมีแนวคิดที่จะจำแนกและวิเคราะห์พฤติกรรมลูกค้า แบ่งออกเป็น 3 กลุ่ม ได้แก่ ลูกค้าที่ซื้อเครื่องดื่มประเภทกาแฟเป็นประจำ ลูกค้าที่ซื้อเครื่องดื่มประเภทชา และลูกค้าที่ซื้อเครื่องดื่มทั้งชาและกาแฟ โดยการใช้ Naive Bayes, Random Forest, Deep Learning เปรียบเทียบเทคนิค ที่มีความแม่นยำและเหมาะสม เพื่อนำข้อมูลที่วิเคราะห์ได้ไปใช้ประโยชน์ต่อไป
คณะวิทยาศาสตร์
โรคหูชั้นกลางอักเสบ เกิดจากการที่ผู้ป่วยติดเชื้อโรคในหูชั้นกลาง ซึ่งสามารถพบได้ในทุกเพศทุกวัย อย่างไรก็ดี การวินิจฉัยสามารถทำได้โดยการนำภาพถ่ายจากกล้องออโตสโคปมาวิเคราะห์โดยแพทย์ผู้เชี่ยวชาญ แต่กระนั้น จำต้องอาศัยประสบการณ์ทางการแพทย์เพื่อลดทอนระยะเวลาในการวินิจฉัย ดังนั้น งานวิจัยนี้จึงนำเสนอเทคโนโลยีทางคอมพิวเตอร์วิทัศน์ มาประยุกต์ใช้เพื่อวินิจฉัยโรคเบื้องต้นประกอบการตัดสินใจให้กับแพทย์ผู้เชี่ยวชาญ โดยใช้เทคนิคการเรียนรู้เชิงลึก และโครงข่ายประสาทเทียมแบบคอนโวลูชัน อย่างสถาปัตยกรรม YOLOv8 และ Inception v3 เพื่อจำแนกประเภทของโรค และคุณลักษณะของโรคหูชั้นกลางอักเสบทั้ง 5 อย่างที่แพทย์ใช้ในการพิจารณาประเภทของโรคอันได้แก่ สี ความโปร่งใส ของเหลว การหดตัว และการทะลุ นอกจากนี้ ยังใช้วิธีการแบ่งส่วนรูปภาพ และการจำแนกประเภทรูปภาพในการวิเคราะห์และทำนายประเภทของโรคหูชั้นกลางอักเสบ ซึ่งสามารถแบ่งประเภทของโรคได้สี่ประเภท คือ โรคหูชั้นกลางอักเสบแบบมีน้ำขัง แบบเฉียบพลัน โรคหูชั้นกลางทะลุ และแก้วหูปกติ ผลการทดลองพบว่าโมเดลจำแนกประเภทสามารถจำแนกประเภทของโรคหูชั้นกลางอักเสบโดยตรงได้ดีพอประมาณ โดยผลลัพธ์ค่า Accuracy อยู่ที่ 65.7% ค่า Recall อยู่ที่ 65.7% และค่า Precision อยู่ที่ 67.6% และนอกจากนี้ยังให้ผลลัพธ์สำหรับการจำแนกคำตอบของคุณลักษณะหูทะลุได้ดีที่สุด โดยผลลัพธ์ค่า Accuracy อยู่ที่ 91.8% ค่า Recall อยู่ที่ 91.8% และค่า Precision อยู่ที่ 92.1% ในขณะที่โมเดลจำแนกซึ่งมีการประยุกต์ใช้เทคนิคการแบ่งส่วนรูปภาพมีประสิทธิภาพดีที่สุดโดยภาพรวม มีค่า mAP50-95 อยู่ที่ 79.63% ค่า Recall อยู่ที่ 100% และค่า Precision อยู่ที่ 99.8% ทั้งนี้ โมเดลดังกล่าวยังไม่ได้ถูกนำไปทดสอบการจำแนกประเภทของโรคหูชั้นกลางอักเสบ
คณะแพทยศาสตร์
โครงการวิจัยนี้ศึกษาผลของสาร CBD ต่อความไวของเซลล์ประสาทในการรับรู้ความเจ็บปวดจากหนู โดยใช้วิธี Whole Cell Patch Clamp เพื่อวัดพารามิเตอร์ทางไฟฟ้าสรีรวิทยาของเซลล์ที่ได้รับการเพาะเลี้ยงด้วย CBD ขนาด 0.5 uM เป็นเวลา 24 ชั่วโมงเทียบกับกลุ่มควบคุม
วิทยาลัยวิศวกรรมสังคีต
โครงงานชิ้นนี้เป็นการศึกษาการออกแบบพื้นที่เก็บเสียงแบบพกพาได้ ซึ่งจะทำให้ผู้ใช้สามารถฝึกซ้อมการใช้เสียงได้โดยไม่รบกวนพื้นที่รอบข้าง