A commercial architecture consists of a community mall and home offices. The project’s main concept concerns the lack of activities around the given site. The project tackles the main issues of underdevelopment by aiming to bring back the liveliness of the local people back by integrating work-life symbolism and natural spaces, resulting in an interesting design.
โปรเจคตามหลักสูตรออกแบบสถาปัตยกรรม 4 ชั้นปีที่ 3 เพื่อเปิดโอกาสให้นักศึกษาได้แสดงความรู้ ความสามารถ รวมถึงความคิดสร้างสรรค์ด้านการออกแบบ สําหรับการลงทุนเพื่อการพัฒนาที่ดิน ให้เป็น พื้นที่เชิงพาณิชย์พร้อมบ้านพักอาศัย ให้มีความพิเศษและน่าสนใจ ตามแนวคิด Concept Green & Digital
คณะวิศวกรรมศาสตร์
This project focuses on the development of an automatic license plate recognition system that supports both standard and special license plates in Thailand. By utilizing Machine Learning technology, the system enhances the efficiency of license plate reading. It can process data from both images and videos. Users can register and subscribe to the service, allowing them to send data for processing through RESTful API, WebSocket, and registered IP cameras.
คณะวิศวกรรมศาสตร์
This capstone project develops an AI-powered chatbot to address cybersecurity vulnerabilities, leveraging the Common Vulnerabilities and Exposures (CVE) system and the Common Vulnerability Scoring System (CVSS). The chatbot will provide accessible and informative support for understanding and mitigating these vulnerabilities, potentially leading to significant improvements in cybersecurity practices.
คณะวิทยาศาสตร์
A new colorimetric assay for the rapid detection of tannic acid in beverage samples based on displacement phenomenon of aggregated gallic acid-modified platinum nanoparticles is developed for the first time. PtNPs were functionalized with gallic acid, promoting the formation of the green-hued aggregated nanoparticles. While colorimetry offers a rapid method for identifying tannic acid, challenges remain in sensitivity and accuracy of detection on the PtNPs colorimetric probe, particularly in the presence of anthocyanin interferences. To address this, we developed a sample preparation method to degrade anthocyanin in beverages. Tannic acid was easily displaced onto the gallic acid-coated PtNPs surfaces, causing dispersion and resulting in a visible color change from green to orange−brown. Under the optimal conditions, the colorimetric sensor exhibited a linear response in the range of 1−2,000 µmol L−1 (R2 = 0.9991). The limit of detection (LOD) and the limit of quantification (LOQ) were found at 0.02 and 0.09 µmol L−1, respectively. The proposed sensor expressed superior selectivity over other interfering substances and demonstrated excellent precision with a relative standard deviation (RSD) of 1.00%−3.36%. More importantly, recoveries ranging from 95.0−104.7% were obtained, indicating the capability of proposed colorimetric sensor to detect tannic acid rapidly and accurately in real beverage samples.