KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

Abstract

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Objective

ปัจจุบันเทคโนโลยีสารสนเทศมีบทบาทสำคัญต่อการดำรงชีวิตของมนุษย์ ทำให้มีการพัฒนาเทคโนโลยีเพื่ออำนวยความสะดวกต่อการดำรงชีวิตของมนุษย์ มีแหล่งข้อมูลข่าวสารที่ทันสมัย รวมถึงแหล่งข้อมูลขนาดใหญ่ที่เรียกกว่าข้อมูลมหัต (Big Data) เป็นข้อมูลที่มีปริมาณมาก (Volume) มีความเปลี่ยนแปลงอย่างรวดเร็วอยู่ตลอดเวลา (Velocity) และมีความหลากหลายสูง (Variety) เนื่องจากคุณสมบัติเหล่านี้จัดเป็นอุปสรรคหรือปัญหาของ ข้อมูลขนาดใหญ่ที่ไม่สามารถนำข้อมูลมาใช้ประโยชน์ได้ทันทีจึงต้องมีกระบวนการจัดการข้อมูล ขนาดใหญ่เสียก่อน โดยใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) เข้ามาเกี่ยวข้อง การเรียนรู้ด้วยเครื่อง (Machine Learning) คือวิทยาการคอมพิวเตอร์ประเภทหนึ่ง เกี่ยวข้องกับการศึกษาและสร้างอัลกอริทึมที่สามารถเรียนรู้ข้อมูลและทำนายข้อมูลได้ สามารถแบ่งการเรียนรู้ของเครื่องออกเป็น 2 กลุ่มประกอบด้วย การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning) คือการวิเคราะห์ข้อมูลที่ไม่มีตัวแปรตามหรือคำตอบกำกับไว้ มุ่งเน้นไปที่การหาความสัมพันธ์ระหว่างข้อมูลและการแบ่งกลุ่มเพื่อลดมิติของข้อมูล เช่น การวิเคราะห์แบ่งกลุ่ม (Cluster Analysis) ซึ่งได้รับความนิยมใช้เพื่อลดมิติของข้อมูลและการแบ่งกลุ่มข้อมูลด้วยคุณลักษณะต่าง ๆ และการเรียนรู้แบบมีผู้สอน (Supervised Learning) คือการวิเคราะห์ข้อมูลที่มีตัวแปรตามหรือคำตอบกำกับไว้ ถ้าตัวแปรตามเป็นเชิงปริมาณจะเป็นการพยากรณ์ข้อมูลอนุกรมเวลา (Time series) แต่ถ้าตัวแปรตามเป็นเชิงคุณภาพจะเป็นการวิเคราะห์การจำแนก (Classification) โดยเทคนิคที่นิยมใช้อย่างแพร่หลายได้แก่ การถดถอยโลจิสติกส์ (Logistic Regression) ต้นไม้ตัดสินใจ (Decision Tree) เทคนิคป่าสุ่ม (Random Forest) และโครงข่ายประสาทเทียม (Artificial Neural Network) เป็นต้น การจำแนกถูกนำมาประยุกต์ใช้ในงานวิจัยในหลายด้าน (วริทธิ์พล , 2565) ข้อมูลอนุกรมเวลา (Time Series) คือ ชุดข้อมูลที่รวบรวมและจัดเก็บตามลำดับ ต่อเนื่องกันภายใต้การเพิ่มขึ้นของเวลา โดยข้อมูลดังกล่าวจะถูกเก็บรวบรวมอย่างต่อเนื่องในระยะเวลาติดต่อกัน ตามช่วงเวลาที่ต้องการ เช่น ข้อมูลราคาทองคำ ข้อมูลปริมาณน้ำในเขื่อน ซึ่งจะถูกบันทึกข้อมูลเป็นวัน ในบางกรณี การจัดเก็บข้อมูลอาจมีลักษณะการจัดเก็บแบบเป็นช่วงเวลาต่อเนื่องกัน เพื่อสร้างตัวแบบอนุกรมเวลา (Time Series Model) ในการทำนายเหตุการณ์ที่จะเกิดขึ้นในอนาคตโดยการวิเคราะห์อนุกรมเวลา (Time Series Analysis) ในการวิเคราะห์อนุกรมเวลา ส่วนใหญ่ข้อมูลอนุกรมเวลาเป็นข้อมูลที่เยอะ ซับซ้อน และมีการเปลี่ยนแปลงอยู่ตลอดเวลา จึงทำให้ยากต่อการหาวิธีที่ดีที่สุดในการพยากรณ์ จึงได้มีการนำการเรียนรู้ด้วยเครื่องมาใช้ในการวิเคราะห์ข้อมูล เพราะ วิธีการเรียนรู้ด้วยเครื่องมีประสิทธิภาพในการวิเคราะห์ข้อมูลอนุกรมเวลามากกว่า (พรทิวา , 2564) โดยทั่วไปในการวิเคราะห์อนุกรมเวลาจะใช้ตัวแปรเพียงตัวเดียว แต่ในวิธีของการเรียนรู้ด้วยเครื่องจะมีการใช้ตัวแปรอิสระ ( ) มาช่วยในการพยากรณ์ ในการวิจัยครั้งนี้จึงสนใจนำช่วงเวลาที่ช้ากว่ากัน (Lag) ของข้อมูลอนุกรมเวลา เข้ามาเป็นตัวแปรอิสระ โดยตัวแปรตาม ( ) คือ ข้อมูลอนุกรมเวลาชุดเดิม แล้วจึงนำไปวิเคราะห์ด้วยวิธีการเรียนรู้ด้วยเครื่อง ประกอบด้วย วิธีต้นไม้ตัดสินใจ (Decision Tree) ป่าสุ่ม (Random Forest) วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ (K Nearest-Neighbor: KNN) และวิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) โดยแต่ละวิธีจะทำการศึกษาเกี่ยวกับการวัดความถูกต้องและความผิดพลาดในการจำแนกข้อมูล Lai et al. (2023) งานวิจัยนี้เกี่ยวกับการพยากรณ์สถานการณ์ปัจจุบันของโควิด 19 โดยใช้ข้อมูลน้ำเสีย ให้ผู้ป่วยโควิด 19 เป็นตัวแปร และให้ปริมาณไวรัสในตัวอย่างน้ำเสียเป็นตัวแปร ผู้วิจัยไม่ทราบตัวแปร จึงได้ใช้วิธีช่วงเวลาที่ช้ากว่ากัน (Lag) เอามาช่วยในการพยากรณ์ตัวแปร พอทราบค่าได้นำไปพยากรณ์ด้วยวิธีการเรียนรู้ด้วยเครื่อง ประกอบไปด้วย แบบจำลองอารีแมกซ์ (Autoregressive Integrated Moving Average with Exogenous Variables : ARIMAX) และการเรียนรู้ด้วยเครื่องจากชุดข้อมูลแบบลำดับเวลา (Time Series Machine Learning : TSML) โดยเทคนิคที่ดีที่สุด คือ วิธีการเรียนรู้ด้วยเครื่องจากชุดข้อมูลแบบลำดับเวลา พรทิวา (2564) งานวิจัยนี้เกี่ยวกับระบบวิเคราะห์ข้อมูลอนุกรมเวลาด้วยเทคนิคทางการเรียนรู้ของเครื่อง โดยเปรียบเทียบวิธีพยากรณ์ออกเป็น 3 เทคนิคประกอบไปด้วยเทคนิควิเคราะห์การถดถอยพหุคูณ (Multiple Linear Regression) วิธีต้นไม้ตัดสินใจ (Decision Tree) และ วิธีป่าสุ่ม (Random Forest) โดยใช้การคัดเลือกเทคนิคที่เหมาะสมที่สุดสำหรับการพยากรณ์โดยใช้เกณฑ์ค่าเฉลี่ยของค่าสัมบูรณ์เปอร์เซ็นต์ความคลาดเคลื่อน (Mean Absolute Percentage Error, MAPE) ต่ำที่สุดผลวิจัยพบว่าการเปรียบเทียบเทคนิคระหว่างวิธีต้นไม้ตัดสินใจ วิธีป่าไม้สุ่ม และ การถดถอยพหุคูณ สำหรับการพยากรณ์ยอดขายรวมรายวันแยกตามรายสินค้าและจำนวนผู้เสียชีวิตรายใหม่จาก สถานการณ์ COVID-19 ในประเทศไทยพบว่าเทคนิคให้ค่า MAPE เฉลี่ยต่ำที่สุดคือ เทคนิคป่าสุ่ม Kayode-Ajala. (2022) งานวิจัยนี้เกี่ยวกับการประยุกต์ใช้อัลกอริทึมการเรียนรู้ของเครื่อง ในการตรวจจับเว็บไซต์ที่เป็นแฟร์ชิ่ง ซึ่งใช้วิธีการเรียนรู้ด้วยเครื่องประกอบด้วย วิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ (K Nearest-Neighbor: KNN) วิธีต้นไม้ตัดสินใจ (Decision Trees) และ วิธีป่าสุ่ม (Random Forest) ซึ่งวิธีที่ดีที่สุดคือ วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ Ballı (2021) งานวิจัยนี้เกี่ยวกับการวิเคราะห์ข้อมูลของการระบาดโควิด-19 และการพยากรณ์จำนวนผู้ติดเชื้อรวมในระยะสั้นๆ โดยใช้เทคนิคการเรียนรู้ด้วยเครื่องประกอบวิธีการถดถอยเชิงเส้น (Linear regression) วิธีโครงข่ายประสาทเทียมแบบเพอร์เซ็ปตรอนหลายชั้น (multi-layer perceptron) วิธีป่าสุ่ม (random forest) วิธีนาอีฟ เบย์ (Naive Bayes) และ วิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) พบว่าเทคนิคให้ค่า MAPE เฉลี่ยต่ำที่สุดคือ วิธีซัพพอร์ตเวกเตอร์แมชชีน Bemthuis et al. (2023) งานวิจัยนี้เกี่ยวกับระบบสนับสนุนการตัดสินใจ (Decision Support Systems) กำลังพัฒนาไปในทิศทางที่ซับซ้อนมากขึ้น โดยมุ่งหวังที่จะทำให้การตัดสินใจเป็นไปโดยอัตโนมัติมากที่สุด จึงวิธีการที่ใช้เทคนิคการจำแนกประเภทด้วยต้นไม้การตัดสินใจ และเปรียบเทียบประสิทธิภาพกับผลลัพธ์ที่ได้จากการใช้เทคนิคสนับสนุนเวกเตอร์แมชชีน การทดลองของเราพบว่า วิธีการของเรามีความแม่นยำและความยืดหยุ่นในด้านการดึงกฎทางธุรกิจ ต้นไม้การตัดสินใจ จากการศึกษางานวิจัยที่เกี่ยวข้องทางผู้วิจัยจึงสนใจศึกษาการเปรียบเทียบประสิทธิภาพของวิธีการเรียนรู้ด้วยเครื่องจากข้อมูลอนุกรมเวลา โดยวิธีการช่วงเวลาที่ช้ากว่ากัน ซึ่งประกอบไปด้วยวิธีต้นไม้ตัดสินใจ (Decision Tree) วิธีป่าสุ่ม (Random Forest) วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ (K Nearest-Neighbor: KNN) และวิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) โดยพิจารณาค่าเฉลี่ยของค่าคาดเคลื่อนกำลังสองเฉลี่ย (Mean Square Error: AMSE) และค่าเฉลี่ยของค่าเฉลี่ยเปอร์เซ็นต์ความคลาดเคลื่อนสัมบูรณ์ (Mean Absolute Percentage Error: AMAPE) เป็นเกณฑ์ในการวัดประสิทธิภาพของแบบจำลอง และเป็นแนวทางการในการเปรียบเทียบประสิทธิภาพด้วยวิธีการเรียนรู้ด้วยเครื่อง เพื่อตัดสินใจในการเลือกแบบจำลองที่ดีที่สุด

Other Innovations

Study on the Production Process and Shelf-Life Preservation of  Plant-Based Crab Cake under Refrigerated Conditions (Lab Scale)

คณะอุตสาหกรรมอาหาร

Study on the Production Process and Shelf-Life Preservation of Plant-Based Crab Cake under Refrigerated Conditions (Lab Scale)

Plant-based refers to food or products that are primarily made from plants. It can be divided into two categories: one is food that comes entirely from plants and does not include any animal products, and the other is food that contains small amounts of animal products, such as products that contain milk and eggs in limited quantities, which may also be considered part of the definition of plant-based. Plant-based meat products that closely resemble real meat and attract consumers are considered a relatively new innovation. Although tofu, tempeh, and seitan have been around for a long time, recent discoveries have led to the production of plant-based meat products that provide a sensory experience, making it difficult for consumers to distinguish between real meat and plant-based meat. Furthermore, the development of plant-based food products must prioritize quality and safety to maximize consumer benefits. Textured Vegetable Protein (TVP) is a plant-based protein made from soybeans using an extruder. It is used as a primary ingredient in the production of plant-based food products due to several advantages. These include: • High Protein Content: TVP is made from soybeans with the fat extracted, resulting in a high protein content. • Texture: When rehydrated, TVP has a texture that closely resembles meat. • Versatility: TVP has a neutral flavor, allowing it to easily absorb the flavors of various seasonings and sauces. • Cost-Effectiveness: Compared to other protein sources, TVP is relatively inexpensive while providing desirable characteristics. These benefits make TVP an attractive option in the production of plant-based foods. This study focuses on developing TVP into a plant-based crab cake and investigating the shelf life of the product in a tightly sealed container under refrigeration. It also analyzes the hygiene and cleanliness of the production process and how these factors affect the presence or growth of microorganisms that may pose a risk to consumers, referencing the cold food safety standards of Thailand. Finally, recommendations for cleaning operational areas will be provided to establishments as a guideline for developing preliminary food safety procedures in laboratory settings.

Read more
Innovation in commercial vertical set of golden apple snails  as environmentally friendly using an aquaponics system

คณะเทคโนโลยีการเกษตร

Innovation in commercial vertical set of golden apple snails as environmentally friendly using an aquaponics system

The innovation of the vertical aquaponics system for rearing golden apple snails integrating with vegetable cultivation by using substrates to water treatment. The system aims to maximize the use of vertical space, save water, and produce safe vegetables for consumption or commercial purposes, and to support living things. The golden apple snail excretes wastes/leftover food scraps that are filtered on the substrates used for water treatment. Meanwhile, natural bacteria help change these wastes into nutrients that plants can use. Therefore, the system is environmentally friendly.

Read more
MANAGEMENT SYSTEM FOR CHEMOTHERAPY IN CANCER HOSPITALS AND CHATBOT CONSULTATION

คณะเทคโนโลยีสารสนเทศ

MANAGEMENT SYSTEM FOR CHEMOTHERAPY IN CANCER HOSPITALS AND CHATBOT CONSULTATION

The process of treating cancer patients in the chemotherapy department at Chonburi Cancer Hospital is complicated and inconvenient due to the procedure of submitting blood test results through the personal LINE application of medical staff, which hinders workflow efficiency. Therefore, the researcher has developed a cancer patient management and tracking program in the form of a web-based application and LINE LIFF (LINE Front-end Framework) application to facilitate both medical personnel and patients. The web-based application is designed for medical personnel to monitor, schedule, and collect patient data, while the LINE application is designed for patients to submit blood test results, view appointment schedules, record symptoms after chemotherapy, log their weekly weight, and access a chatbot for consultation. This system is developed based on client-server technology, which enhances data analysis efficiency and supports automated treatment planning. As a result, the cancer treatment process becomes faster, more modern, and more efficient.

Read more