KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Product development of fish ball from Blackchin tilapia (Sarotherodon melanotheron)

Abstract

-

Objective

เนื่องจากปลาหมอคางดำมีการแพร่กระจายของประชากรได้อย่างรวดเร็ว จึงต้องมีการควบคุมประชากรของปลาหมอคางดำด้วยการนำไปใช้ประโยชน์ จึงมีการทดลองนำปลาหมอคางดำมาทำเป็นผลิตภัณฑ์ลูกชิ้นปลา เพราะลูกชิ้นปลาเป็นอาหารที่เข้าถึงได้ง่าย และโปรตีนสูงอีกทั้งยังเป็นอาหารที่เหมาะสมสำหรับทุกเพศทุกวัย

Other Innovations

Processed pineapple

คณะบริหารธุรกิจ

Processed pineapple

The goal of the processed pineapple study is to reduce the number of pineapples wasted as a result of climate change and to determine the best way for processing different pineapple species. The drying method, also known as dehydration, is chosen for processing because it is appropriate for the variety's features and will provide the maximum benefit while reducing waste, resulting in the most value for the product. This study was carried out to develop the processing of new kinds, use various processing principles to adapt to this pineapple variety, raise the value of agricultural goods, significantly reduce waste, and provide marketing potential in the future.

Read more
CO Breathalyzer with Voice Response

คณะบริหารธุรกิจ

CO Breathalyzer with Voice Response

CO Breathalyzer with Voice Response is the device to measured the level of CO residual in a person's lung who consume tobacco. Measuring residual CO in human breath can identify the tobacco addiction level instead of measuring nicotine in blood.

Read more
Vision-Based Spacecraft Pose Estimation

วิทยาลัยอุตสาหกรรมการบินนานาชาติ

Vision-Based Spacecraft Pose Estimation

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Read more