KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Automatic License Plate Recognition Service

Abstract

This project focuses on the development of an automatic license plate recognition system that supports both standard and special license plates in Thailand. By utilizing Machine Learning technology, the system enhances the efficiency of license plate reading. It can process data from both images and videos. Users can register and subscribe to the service, allowing them to send data for processing through RESTful API, WebSocket, and registered IP cameras.

Objective

ในปัจจุบัน ระบบการอ่านป้ายทะเบียนอัตโนมัติ มีการนำมาใช้กันอย่างกว้างขวาง เช่น ระบบตรวจสอบรถ เข้าออก ระบบจัดการลานจอดรถ ระบบขนส่งสาธารณะที่ใช้เก็บค่าผ่านทางแบบอัตโนมัติ ระบบรักษาความปลอดภัย เป็นต้น ความแม่นยำในการอ่านป้ายทะเบียนจึงเป็นสิ่งจำเป็นอย่างยิ่ง เพื่อประสิทธิภาพ และความถูกต้องของข้อมูล เทคโนโลยี Machine Learning จึงถูกนำมาประยุกต์ใช้ เพื่อเพิ่มประสิทธิภาพในการอ่านป้ายทะเบียน ไม่ว่าจะเป็นในรูปแบบของ Software Module ที่ติดตั้งแบบถาวร หรือเป็นบริการ E-service อย่างไรก็ตาม ระบบรูปแบบ Software Module มักพบปัญหาในการไม่ได้รับการอัปเดตอย่างสม่ำเสมอ และระบบรูปแบบ E-service ในปัจจุบันยังไม่สามารถอ่านป้ายทะเบียนของประเทศไทยได้อย่างมีประสิทธิภาพ เนื่องจากความซับซ้อนของภาษาไทย ที่เกิดจากป้ายทะเบียนรูปแบบพิเศษ เช่น ป้ายทะเบียนประมูลของกรมขนส่งทางบก ที่มีลวดลาย และรูปแบบตัวอักษรที่แตกต่างจากป้ายทะเบียนปกติ จากปัญหาที่กล่าวมา โครงการนี้จึงมีแนวคิดในการพัฒนา Machine Learning Model ที่ออกแบบมาเพื่อจัดการกับปัญหาเฉพาะของป้ายทะเบียนในประเทศไทย โดยมีเป้าหมายความแม่นยำในการอ่านป้ายทะเบียนอยู่ที่ 95 เปอร์เซ็นต์ พร้อมกับการพัฒนาบริการ E-service สำหรับการอ่านป้ายทะเบียนอัตโนมัติ ให้ผู้ที่สนใจสามารถเข้าใช้งาน Machine Learning Model ของเราได้ โดยผ่านการลงทะเบียนบนเว็บไซต์ จ่ายค่าสมัครใช้บริการรายเดือน และส่งข้อมูลในรูปแบบของรูปภาพผ่าน RESTful API, WebSocket และวิดีโอผ่านกล้อง IP ที่มีการลงทะเบียนเอาไว้กับระบบ นอกจากนี้ยังมีการพัฒนาเว็บไซต์สำหรับผู้ดูแลระบบ เพื่อช่วยในการบริหารจัดการและตรวจสอบการทำงานของระบบ

Other Innovations

Air Quality Index Prediction Using Ensemble Machine Learning Methods

คณะวิทยาศาสตร์

Air Quality Index Prediction Using Ensemble Machine Learning Methods

This special problem aims to study and compare the performance of predicting the air quality index (AQI) using five ensemble machine learning methods: random forest, XGBoost, CatBoost, stacking ensemble of random forest and XGBoost, and stacking ensemble of random forest, SVR, and MLP. The study uses a dataset from the Central Pollution Control Board of India (CPCB), which includes fifteen pollutants and nine meteorological variables collected between January, 2021 and December, 2023. In this study, there were 1,024,920 records. The performance is measured using three methods: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination. The study found that the random forest and XGBoost stacking ensemble had the best performance measures among the three methods, with the minimum RMSE of 0.1040, the minimum MAE of 0.0675, and the maximum of 0.8128. SHAP-based model interpretation method for five machine learning methods. All methods reached the same conclusion: the two variables that most significantly impacted the global prediction were PM2.5 and PM10, respectively.

Read more
Innovative Seafood Dipping Sauce and Jaew Sauce in Cude Form

คณะบริหารธุรกิจ

Innovative Seafood Dipping Sauce and Jaew Sauce in Cude Form

This project aims to develop seafood dipping sauce and Jaew sauce in solid cube form to address the limitations of liquid sauces, which can be difficult to carry and prone to spillage, as well as powdered sauces, which may lose their texture and authentic flavor. The research and development process focuses on utilizing distinct ingredients and innovative production techniques to enhance the quality and functionality of the product. The primary objective of this project is to introduce an innovative solution that improves the convenience of consumption and transportation while preserving the original taste and quality of traditional dipping sauces. The expected outcome is a novel dipping sauce product in solid cube form that is easy to carry, minimizes the risk of spillage, and holds potential for commercial development in the food industry.

Read more
Smart system for tracking raising rate of crickets using infrared camera

คณะวิทยาศาสตร์

Smart system for tracking raising rate of crickets using infrared camera

In raising crickets for meat consumption, the growth rate and growth period of crickets are important data used to identify the number of crickets per breeding area at each age. Therefore, the researcher has an idea to create a system for monitoring the growth rate of crickets in a closed system using an infrared camera combined with computer image processing to study the growth and identify the growth period of crickets at each age in order to obtain knowledge that can be disseminated to farmers to improve the breeding process for maximum efficiency.

Read more